

TechPubTools™
User’s Guide

Single Sourcing and API Documentation
tp-tools-ug-02

TechPubTools v. 2.00
© 2003 by Glenn C. Maxey and Voyant Technologies, Inc.

Printed in the U.S.A.

ii TechPubTools User’s Guide

Revision History

Revision Date Revised By Revision Summary

02 01/08/2003 Glenn Maxey Changed information to reflect the
way the tools have been modified and
their new version level; added several
new perl programs, new shell scripts,
new filters, new data structures.

01 01/21/2002 Glenn Maxey Creation of Document; published at
beta level.

Document # tp-tools-ug-02 iii

License and Disclaimer

Permission to use, copy, modify, and distribute this software and its
documentation under the terms of the GNU General Public License is
hereby granted. No representations are made about the suitability of
this software for any purpose. It is provided “as is” without express or
implied warranty. See the GNU General Public License
(www.gnu.org/copyleft/gpl.html) for more details.

Documents produced by the TechPubTools are derivative works
derived from the input used in their production; they are not affected
by this license.

Voyant Technologies, Inc. offers these tools and techniques developed
for Voyant’s Technical Publications Department in the spirit of
professional cooperation among technical writers and in the spirit of
open-source tools, upon which part of this solution is based.

However, it should be noted that:

• Voyant is not in the business of creating tools for technical
publications; the development of in-house tools in combination
with off-the-shelf commercial and open-source tools came about
out of necessity rather than as a concerted effort to create a finished
consumer product (which this isn’t).

• Voyant makes no claims that the HTML system that documents
these tools and techniques is entirely representative of what they
can do.

» Doxygen - an integral part of these tools and techniques - was
designed for C/C++.

» Doxygen is being used on Perl programs and UNIX shell
scripts.

• Voyant makes no claims that any of the Shell scripts, Perl
programs, or techniques will work in your environment.

• Voyant makes no claims, expressed or implied that they will:

» maintain or support these tools.

» incorporate and make available improvements coming from
internal or external sources.

You are expected to make any and all modifications to get these to
work in your environment.

iv TechPubTools User’s Guide

Notes:

tp-tools-ug-02 v

Contents

Scope of TechPubTools . xi

TechPub Tools Features . xiii

Jump Start . xiv

Chapter 1 Single-Sourcing and API Documentation . 1

The Naysayer’s Argument . 1

Single-Sourcing Naysayers. 1

API Documentation Naysayers . 2

Reality Check . 3

Single-Sourcing Rant . 4

“Don’t let perfect be the enemy of the good.” . 4
Time Heals . 4
Give the Readers Credit . 5
Analog Not Anal . 5

Dysfunctional Online . 6
Online Disadvantages . 6
Lots of Plumbing but Little Water. 7
Three Strikes and You’re Out. 7
Pop-Up Happy Hell. 7
Context-Sensitive Suggestion. 8

Tried and True Printed Manuals . 8

The Best of Both Worlds . 9
Foundation and Structure. 9
Plumbing with Water . 10
Moving Day . 10
Withholding Tax . 11

API Documentation Rant . 12

Software Engineering . 13
Information Repository and Tools . 13
Reusability . 13
Send in the Tech Writer. 14
What You Get . 14

Source Code Extraction Tools . 15

Concerns about Auto-Documentation Tools . 16
Writing Quality in the API Documentation. 16
Auto-Documentation Benefits . 17
The Code Can Contain More Information . 18
Software Engineers as Technical Writers . 18

The Future of (API) Documentation . 18
Code Generation . 19

vi TechPubTools User’s Guide

Contents

Software Public Libraries . 19
Get More Thinkers Involved . 20
Royalties for Their Efforts. 20
(New) Copyright Protection. 20
What You Get . 21

Chapter 2 Environment and Tools. 23

My Environment . 23

Home-Grown Tools . 25

Directory Structure . 26

Chapter 3 FrameMaker and Mif2Go . 29

FrameMaker . 29

FM Formats. 30

Mapping FM Formats to HTML Constructs . 31

Online Use and Conditional Text . 33

Cascading Style Sheet . 33

Mif2Go. 34

Fonts Mapping . 34

File Splitting . 36

Post-Processing Tags in Splitting . 37

Chapter Ordering. 40
[FileIDs] in the mif2go.ini . 41
[FileSequence] in the mif2htm.ini . 41
[HTMLStyles] in the mif2htm.ini . 42
[HTMLStyleFilePrefix] in the mif2htm.ini . 42
[HTMLOptions] in the mif2htm.ini. 43

Index Tokens . 44

Chapter 4 Doxygen . 47

Preparation for Using Doxygen. 47

The Doxygen Project File . 48

Input Filters. 48

HTML Output . 49

PDF Output. 49

Chapter 5 Java TOC Applet . 51

Chapter 6 Shell Scripts. 53

00_build_tp_tools.b . 54

20_cp_com_files.b . 55

30_tp_tools.b . 55

31_perl.b and 31_script.b . 55

32_perl.b and 32_script.b . 56

35_gen_dox.b . 56

40_latex_build.b . 57

45_latex_build.b . 57

50_nav_update.b . 58

55_nav_gen.b . 59

55_nav_cp.b . 60

tp-tools-ug-02 vii

 Contents

56_nav_index.b. 60

56_nav_script.b. 61

Chapter 7 globe.pm . 63

Overview. 63

Variable and Data Structures . 64

Common Routines . 65

Chapter 8 voyant_nav.pl . 67

Overview. 67

The Beginnings. 68

The Extensions . 68
CYA . 68
Data Structures. 69
Topic Browsing . 69
Index Tokens . 70

Input. 71

Output . 72

Chapter 9 voyant_mt_app.pl . 75

Overview. 75

The Beginnings. 76

The Extensions . 76

Input. 76

Output . 77

Chapter 10 voyant_indexer.pl . 79

Overview. 79

The Beginnings. 80

The Extensions . 80

Building on the Java TOC Applet . 82

Input. 82

Output . 83

Chapter 11 voyant_latex.pl . 85

Input. 85

Output . 86

Chapter 12 find_extract.pl. 87

Overview. 87

Input. 88

Output . 88

Implementation Details. 90

Chapter 13 tree_js_2_script.pl. 91

Overview. 91

Input. 92

Output . 92

viii TechPubTools User’s Guide

Contents

Chapter 14 html_look_integrate.pl . 93

Overview. 93

Input. 94

Output . 95

Chapter 15 ini_html_gen.pl . 97

Overview. 97

Input. 98

Output . 99

Chapter 16 log_html_gen.pl . 103

Overview. 103

Input. 104

Output . 105

Chapter 17 Input Filters to Doxygen . 107

dox_bug_filter.pl . 107

dox_ive_filter.pl . 108

dox_chg_not.pl . 108

dox_comment_chg.pl . 108

pl_comment_change.pl . 109

csh_comment_change.pl. 109

Chapter 18 voyant_master_nav.html . 111

Overview. 111

Minimum Master Definition . 112

Variables . 113

Chapter 19 TOC Implementation. 115

m_tree.script . 115

m_toc.html . 116

Logical Extensions of the Applet . 116

Chapter 20 voyant_master_index.html. 119

Chapter 21 Common Files. 121

Default HTML Files for Doxygen . 121

Navigation GIF files. 122

Cascading Style Sheet . 122

Index . 123

tp-tools-ug-02 ix

 Contents

Notes:

x TechPubTools User’s Guide

tp-tools-ug-02 xi

Scope of TechPubTools

This document describes some techniques and tools for single-sourcing
and application programming interface (API) documentation or
software development toolkit (SDK) documentation.

Single-Sourcing

If your interests are just single-sourcing, what is presented here can
assist you in creating an HTML system that is modular and scalable.
This assumes that you are using FrameMaker as the source and that
Mif2Go or WebWorks Publisher generate mini-HTML systems for
your books.

What these tools do is wrap all of these individual systems into one
comprehensive system with a table of contents, index, and links to
associated PDF files. They make it easier to create modular systems.

API Documentation

If your interests are just API documentation, what is presented here
can assist you in creating an HTML system that is modular and
scalable. This assumes that you are using code files as the source and
that Doxygen or JavaDoc generate mini-HTML systems for your API
or SDK projects. What these tools do is wrap all of these individual
systems into one comprehensive system with a table of contents,
index, and links to associated PDF files.

Extend Me

Although the TechPubTools and techniques were designed specifically
for C/C++ API documentation, they can be adopted and modified:

• to handle other programming languages.

• to produce large online documentation systems from multiple
FrameMaker books.

xii TechPubTools User’s Guide

Proof of Concept

Experience taught me that modularity should be built into the
TechPubTools from the onset in order to save much re-work and
re-design later.

Since starting on this project (October 2000), I have employed them
and refined them in over 18 separate master projects as of January
2003. Most of the 18 separate projects are still being maintained.

• On the average, each project contains at least three (3) sub-projects
from FrameMaker and at least two (2) sub-projects from Doxygen.

• My largest project has two (2) sub-projects from FrameMaker and
38 sub-projects from Doxygen.

• Interestingly, nearly all of the 18 projects contain at least one or two
sub-projects that are duplicates, although my source files (and
even HTML directories) have not been duplicated. I use symbolic
linking and the modularity and flexibility in the tools to
publish-it-in-one-place and expose-it-in-many-places.

Although I firmly believe that you can’t provide a reader with too
much information, I do concede that sometimes too much information
in one venue can be overwhelming. Breaking a project into modular
components permits re-use of those components in other settings
when relevant.

• In one case, I have a comprehensive project with some 40
sub-projects that publishes everything I know about that project.

» The comprehensive view is of interest to the owning engineers.

» For some of the down-stream internal users, need-to-know
issues came up as well as noise in the index and table of
contents.

» I created separate projects and symbolically linked various
sub-project directories in order to generate smaller, focused
views of different areas of the project.

• In several cases, individual components of various projects are
useful for other related projects.

» Certain manuals are needed by both internal and external
audiences

» Certain internal audiences require different levels of details or
components from one or more projects.

» I maintain everything about the smaller project in one location.
Then I build up larger projects by symbolically linking to
component directories of various smaller projects.

Working smarter and not harder.

tp-tools-ug-02 xiii

 TechPub Tools Features

TechPub Tools Features

The TechPubTools described in this document create an online HTML
system with appropriate links to the associated PDF files. The features
of the online HTML system include:

• HTML suitable for a website or CD-ROM.

• A modular design with multiple mini-HTML systems coming from
various sources.

• (Mif2Go/WWP) FrameMaker books each can be in their own
directory with their own mini-HTML system.

• (Doxygen/JavaDoc) Code reference components each can be in
their own directory with their own mini-HTML system.

• Flexible bi-pane design that can be easily customized; the two
panes are the navigation frame and the data frame.

• The navigation frame controls the information that is displayed in
the data frame. The navigation frame supports:

• a comprehensive table of contents with collapsing/expanding
levels using an award-winning Java applet. Input to the applet
are multiple, generated-from-these-tools script files that are
nested and very flexible. The Java applet is available at
www.better-homepage.com/java/java-applets-toc.html.

• a comprehensive index covering all HTML files in the system
as well as word-chunking.

• (DevaSearch) a comprehensive full-text search. This is available
at www.devahelp.com.

• navigation in the index implemented using multiple, generated
HTML files and no Javascript.

• The data frame displays the individual HTML topic. The two
supported types of HTML topics are “descriptive” topics (books)
and “reference” topics (code). Each HTML topic has:

• a common navigation bar at the top.

• a second navigation bar that changes depending on whether it
is a descriptive topic or a code reference topic.

• links to the table of contents, index, and its associated PDF file.

• The individual HTML topics as well as the index each have their
own template documents. As such, changes to the look-and-feel or
navigation can be made in one place and propagated quickly
throughout the whole system.

xiv TechPubTools User’s Guide

Jump Start

The TechPubTools start where Mif2Go and Doxygen left-off.
Alternative products are available for both of these that can get you to
the same point.

• Mif2Go is the tool that exports HTML from FrameMaker
documents.

• Doxygen is the tool that extracts prototypes and specially flagged
comments from the source files.

Assuming that you have figured out how to get HTML output from
both Doxygen and Mif2Go, the only additional pieces of information
you need are how the configuration/INI files insert the tags that are
needed for later processing. These are covered in Chapter 3,
“FrameMaker and Mif2Go,” and Chapter 4, “Doxygen.”

From there and because you’re reading this, you probably already
unzipped this project and have the template directory structure that
you need. It is just a template. Copy it (or unzip the zip file) into a new
location that becomes your new build area.

Look into the 00_build_tp_tools.b UNIX shell script file. You may
never have reason to use this script because it uses CVS.

What is important about the 00_build_tp_tools.b script is that it
calls the other scripts in the proper order. Hence, look at what this
script is calling and open those script files in sequence to see what they
are doing. Copy those scripts and edit as needed to match your
directories. Remember to include their call in 00_build_tp_tools.b
for the sake of completeness.

You will need master files (HTML) that reflect what you want to
output. You can modify the voyant_master...html or make copies of
these. (If you copy them to new names, the associated scripts will need
to be updated.) These master files need information about your
project. This is embedded in HTML comments.

Once you have your source (HTML) in the proper directories, updated
master files, and updated scripts, run your scripts.

The output is placed in the doc_publish directory. Click on
_start_here.html to see what you’ve done.

tp-tools-ug-02 1

Chapter 1 Single-Sourcing and API
Documentation

The technical writing profession has many buzzwords that want to
steer how we produce our documentation. These include:

• single-sourcing

• maintainability

• re-usability

• automation

• web-updatable

The opinions from reputable experts in this field vary about how far
we should go in certain directions.

The Naysayer’s Argument

Single-sourcing and API documentation generated from code has
caused many heated debates in various online forums for technical
writers.

Single-Sourcing Naysayers

Some feel that the effort required to implement documentation
processes that allow you to write-once and generate-many-outputs
isn’t cost-effective. They say:

• Implementing the processes and maintaining them distract the
technical writers from their primary purpose of writing content.

• Single-sourcing degrades the content of the output formats,
because you can no longer apply the text, tone, and information
applicable to the different mediums.

The Naysayer’s Argument

2 TechPubTools User’s Guide

• Single-sourcing tools can be crude, can require extensive
customizing, can produce imperfect output always needing
tweaking, and are thus not always a time-saver.

• Most organizations do not produce enough documentation to
warrant such a major investment in a complex documentation
system.

API Documentation Naysayers

When the single-sourcing discussion is extended to API
documentation, again the opinions vary. If you ignore tutorial,
overview, and how-to material and focus only on the reference
information, the points of contention are:

• Can source code extraction tools (auto-documentation) generate
your reference manual?

• Where should the information for reference manuals reside?

» In the source code?

» In documents separate from the source code?

• Who should maintain the reference material?

» The technical writer?

» The software engineer?

One side of this argument say that tools cannot get you your API
manual. For various company-specific technical and political reasons,
they say that the information needs to be maintained separate from the
source code by the technical writer.

• Manuals created from auto-documentation tools that extract
prototypes and comments from the source code were not as
complete or as easy to read as those manuals created “by hand.”

• The tools can generate documents that have accurate code
prototypes, but don’t generate code examples or prolific
explanations.

• The source code contains very little information. You get data
points, lists of code items and their classification, but little
description of what they do, what they mean, or why they are the
way they are. Neither the code nor the code comments explain the
API to an external user.

tp-tools-ug-02 3

 Chapter 1 Single-Sourcing and API Documentation

• Software engineers shouldn’t write the API reference material
because:

» They don’t have the time to step back and think about the code
from an API-user’s perspective.

» They barely have time to comment their code about why
something was implemented the way it was.

» They can’t write, don’t like to write, or aren’t allowed to write
the information in a polished manner.

» They might not even have English as their native language.

» Whatever they write must be heavily edited.

• Although the software engineer may know (a) what features have
been added, (b) why you would use them, and (c) how you would
use them, this information rarely resides in the commented code.

• Auto-documentation tools require a level of trust that the software
engineers are keeping their code comments up to date.

Reality Check

Whereas all of the points against single-sourcing and against using
tools (to produce API reference material) are valid, the counter
arguments are more sober because they reflect reality.

• Technical writers are being asked:

» (hurdle 1) to produce documents in various output formats.
(Single-Sourcing).

» (hurdle 2) to update the information in each of those output
formats from release to release. (Maintainability).

» (hurdle 3) to re-purpose and re-use much of the same
information in different manuals and in different output
formats. (Re-usability).

» (hurdle 4) to streamline the process to improve the accuracy
and reduce the margin for human error. (Automation).

» (hurdle 5) to keep our customers up-to-date with the latest
changes to the documentation. (Web-Updatable).

• Aside from everything else we write, many of us are being asked:

» (hurdle 1) to document APIs in (unfamiliar) programming
languages.

» (hurdle 2) to maintain this API documentation for a fast
changing code pool in a development environment with
frequent releases.

Single-Sourcing Rant

4 TechPubTools User’s Guide

The rants that follow try to provide some real-world common sense to
our plight before plunging into the details of a cost-effective solution
that can help us achieve our buzzwords.

• single-sourcing

• maintainability

• re-usability

• automation

• web-updatable

If you ignore the rants (not a bad idea), go directly to the next chapters,
and put these open-source techniques to use in your environment,
you’ll see not only where the nay-sayers above were right and but also
where they were wrong.

Single-Sourcing Rant

Many in the technical writing profession have deep-seated views
about writing information for the delivery medium. They say that
information designed for print is fundamentally different from
information designed for online use. Admittedly, a printed manual
may not be ideal for online usage.

“Don’t let perfect be the enemy of the good.”

If you have to weigh “imperfectly” publishing something versus not
publishing it at all electronically solely because the text was originally
written for print, the deciding factor should be how well your course
of action serves your audience.

Withholding information does not serve your audience.

Calls to the Help Desk with questions that an unpublished document
could answer do not serve your organization.

Time Heals

Remember that documentation, like software, can be improved from
release to release. Over time, we can write or re-write our
documentation in such a manner where it will adequately meet the
needs of our readers regardless of the medium used to retrieve it.

tp-tools-ug-02 5

 Chapter 1 Single-Sourcing and API Documentation

Or stated another way, any efforts to streamline the text for quick and
effective reading online will also benefit a printed version.

Give the Readers Credit

And even if we lack the time to “neutralize” our text to make it
acceptable for all media, let’s be realistic about our readers. Our
readers are intelligent and have good filters. Advertising in
newspapers, magazines, television, and the Internet has trained us
well.

Analog Not Anal

This means that technical writers can stop worrying about whether
traditional terms like book/manual, chapter, section, and page number
should be purged from the (online) documentation.

1 Our readers are going to read passed those terms anyway to get to
the content that is of interest.

2 We shouldn’t underestimate the historical significance of those
terms and their usefulness in chunking the material and orienting
readers.

3 When an online documentation system duplicates (my
recommendation) or overlaps (a reader annoyance) with
print/PDF, keeping the text identical even down to references to
page numbers is a service to the readers. It provides the assurance
that the online documentation or PDF documentation is complete
and permits using the two in tandem.

Single-Sourcing Rant

6 TechPubTools User’s Guide

4 If the hyperlink works and does indeed take the reader to that
information, the “big taboo” of a page number in an online
medium isn’t going to be a hindrance to usability.

» Jared Spool of User Interface Engineering states that hyperlinks
should give the reader a “scent for the information” and where
they will land.

» If our cross-reference text says “Turn to page 60 for more
information about Topic X”, our readers won't care that there is
not a page 60 in HTML as long as the hyperlink works and gets
them to the equivalent of page 60 and Topic X.

» The wording and numbering of cross-references for book (“The
Installation Book”), chapters (“Chapter 5 Configuration”) and
figures (“Figure 4.12 Schematic of X”) can and do have a place in
print and online help -- much to the chagrin of online help
purists.

» If you must be a purist, become intimately familiar with
FrameMaker’s conditional text.

Dysfunctional Online

The main advantages of online information are in

• how the information is reached and

• how the information is delivered.

Context-sensitive links from software applications can quickly bring
the reader directly to useful, applicable information.

The table of contents, index, and full-text search permits more
dynamic access much faster.

When the requirement for printed information becomes less, you can
realize an immediate savings on printing and shipping expenses.

Online Disadvantages

The main disadvantages of online information are in the discomfort of
reading text on a screen and in the difficulties of printing entire
manuals and page ranges.

However, another disadvantage of many implementations of online
help is “Lots of Plumbing but Little Water.” The implementation has
working context-sensitive links from every widget in the interface, yet
the resulting pop-up dialog boxes have little content and few links to
more information.

tp-tools-ug-02 7

 Chapter 1 Single-Sourcing and API Documentation

Lots of Plumbing but Little Water

A common occurrence when you need assistance with some Fritz
widget in a dialog box.

• Your first click is on the tiny question mark in the corner of the
dialog box just a few pixels away from the minimize and close
icons, because there is no obvious Help button.

• Your second click on the Fritz widget.

• You get a pop-up with the text “This is where you turn Fritz on and
off,” as if the checkbox next to the Fritz label didn’t already tell
you that!

• Your third click makes the next-to-useless pop-up go-away.

In trying to get the online help plumbing to work without errors, the
technical writer had little time to provide more information or relevant
hyperlinks about what Fritz does, what settings interact with Fritz,
what values are valid, etc. ‘

Three Strikes and You’re Out

A reader is forgiving up to a point. The documentation typically has
only three opportunities to prove its value to the reader. When the
reader refers to the documentation, searches for information, and
doesn’t find what they need, their belief after the first two failed
attempts is that they are too novice or too stupid with the software to
know what to look for; it must be their fault.

However, after the third failed attempt to find useful information in
the documentation, the reader quickly surmises that they aren’t the
ones at fault. The documentation and/or application are at fault. The
reader will rarely waste their time again.

Pop-Up Happy Hell

Even when the pop-ups for every widget in the dialog box did contain
some information, you had to click three times for every widget in the
dialog box to learn everything about that dialog box.

In many cases, a printed manual with all of the information about
Fritz on one or two pages would have served the reader better than
this pop-up happy context-sensitive online help.

Single-Sourcing Rant

8 TechPubTools User’s Guide

Context-Sensitive Suggestion

The technical writer was justified in using all context IDs provided by
the developer and in avoiding duplication of information (a legitimate
maintenance issue). However, they created a usability issue.

In most cases, a given dialog box can usually have all of its Fritz
widgets described in a single banner topic.

• Look into ALIAS and MAP sections of the project files to get the
individual Fritz context IDs to route to your single topic that
discusses the entire dialog box. Even in the rare cases when the
dialog box coming from software engineering is so complicated
that it can’t be discussed in one topic, breaking it into two or three
topics is still better than letting umpteen individual Fritz context
IDs dictate that many pop-up topics.

• Look into in-line topics or targets which can get the user to the
correct, context-sensitive location of a larger topic.

Note: Jared Spool of User Interface Engineering states from his research and
usability studies that “users are not adverse to scrolling if the information is
useful and relevant.”

Tried and True Printed Manuals

Aside from being portable and having easily understood navigation,
printed manuals sometimes have an organizational advantage over
online help.

Specifically, many online documentation projects were designed under
the mistaken philosophy that the readers will only get to a given topic
from a random context-sensitive link directly out of the application. As
a result, the technical writer may have neglected:

• To group and organize the topics into a logical sequence.

• To include appropriate entries in the table of contents, which
affords the reader on occasion with a much needed overview and
scope to the material.

• To implement browse buttons or other means of paging forward
and backward “around a topic” for information that would
normally be located nearby in a conventional manual, much less
paging from cover-to-cover.

Because pop-up topics do not contain non-scrolling regions and other
navigational buttons available in “banner” topics, they are excluded
often from browsing, the table of contents, and the index for reasons of

tp-tools-ug-02 9

 Chapter 1 Single-Sourcing and API Documentation

look-and-feel and consistency. This can make online documentation
even less useful for the “accidental tourist” who relies on discovering
new things by paging through what is available.

Note: Context-sensitive help is not the only random way of getting to a topic.
Printed manuals have long supported the random nature of the index and
table of contents, as well as cross-references to other topics. This is in
addition to where a reader might land if they were to flip through the pages
stopping at the pretty pictures. Aside from the speed, online documentation
really only offer the incremental advantage of getting to a relevant topic
directly from the application.

A context-sensitive help system should not be so fundamentally
different from a printed manual. The technical writer still needs to:

• develop a logical structure for the information.

• put things in context.

• provide a logical flow.

• write content, because weak topics and thin content aren’t as easy
to hide in a printed manual that can be skimmed page-by-page.

The Best of Both Worlds

Producing online and printed material need not be a chore where
wording and content are tailored to the medium. Single-sourcing not
only saves time and effort, but also allows both mediums to improve
from the documentation effort. Printed material can benefit from the
personal 2nd person language and terse writing style of online
material; online material can benefit from the completeness in
organization and navigation of the printed material.

The best of both worlds (print and online) can be approached.

Foundation and Structure

Write and organize the documentation with PDF (print) as the initial
target even if ultimately intended for online uses (WinHelp,
MS-HTML Help, HTML, etc.)

• This forces more thought into document structure, document
organization, topic grouping, topic chunking, topic layout, topic
wording, etc.

• This can force more thought into the content, because you are
primarily concerned about a linear structure rather than the
hyperlink plumbing required to make a bells-and-whistle online
version.

Single-Sourcing Rant

10 TechPubTools User’s Guide

• A reference chapter that is organized alphabetically is still
organized.

• You should plan to provide support for linear browsing that can
hit all topics from beginning to end.

Plumbing with Water

Overlay the plumbing for online help (e.g., content IDs, URLs) on the
documentation (e.g., markers in the source document) to hyperlink the
application to the relevant information in the documentation.

• Plan for banner topics (e.g., displayed with a non-scrolling
region in WinHelp) rather than pop-up topics.

• Banner topics allow for better navigation, because navigation
buttons (Contents, Index, Browse, etc.) are present.

• As part of the movement for responsible use of pop-up topics,
encourage the software engineers to have Content-IDs assigned to
all widgets in the interface, but have them change the API function
call to one that displays banner topics instead of pop-up
topics.

• Map, alias, and route links to the same banner topics or to
mid-topic locations as appropriate.

• The technical writer should be making the decision when pop-up
topics are used where they make the most sense (such as
definitions.)

Moving Day

You deliver PDF in addition to your other content-sensitive help.
Why?

• If you deliver PDF, you can reduce the number of printed pages
that you have to produce and ship. The costs are pushed to the
customer, but is a direct savings to your organization.

• PDF files print better than topics from WinHelp or a browser.

• PDF files are laid-out for print and permit printing of entire
manuals or ranges of pages.

• With minimal up front planning, each topic in the online help can
directly link to its associated PDF file.

• Printed manuals may not always physically remain with the
installation machine over time. Online information is often more
closely coupled with its associated software application or

tp-tools-ug-02 11

 Chapter 1 Single-Sourcing and API Documentation

hardware in terms of hard-disk location. Hence, online
information can remain accessible as long as the application
remains installed and working.

Withholding Tax

Don’t withhold information. “Bits are small and CD-ROMs hold lots of
them.”

• If your readers don’t find the information that they need, who are
they going to call? Ghostbusters? Or your expensive customer
support department.

• The entire, complete documentation suite can be published and
distributed on CD-ROMs. Updates can be made available over the
Internet.

• The index/concordance does not have to be limited in its
comprehensiveness, because online pages load fast, scroll easy, and
can be searched.

• An index is not the same thing as a full-text search. Full-text search
is not under the technical writer’s control, provides more topic
misses than hits, and can be cumbersome to use (e.g., every other
click is the browser’s Back button.)

Note: Paraphrased from Jared Spool and User Interface Engineering:

“The more times the users searched, the less likely they
were to find what they wanted.

“The data is quite clear on this: On a single search, users
found their content 55% of the time, whereas users who
searched twice found their content only 38% of the time.
None of the users in our study who searched more than
twice ever found their target content...

“Theoretically, as people use the search engine, they should
get better at making it perform. After all, each successive
interaction is a learning moment -- something that is
teaching them the idiosyncrasies of the tool...

“But that's not what we've seen. Either users succeed up
front, or things go downhill rapidly.”

API Documentation Rant

12 TechPubTools User’s Guide

API Documentation Rant

The beauty of application programming interfaces (APIs) is that once
they are defined, they aren’t supposed to change. This may give the
mistaken impression that its documentation can be written with a
one-time push and minimal effort in subsequent releases.

Traditional software documentation projects may require
many screen shots of the application whose content the software
engineer can re-arrange, rename, and re-locate at any point in time
in any release. The documentation needs to keep up in order to be
accurate.

API documentation projects, on the other hand, explain “what” the
API needs and does, but not necessarily the details on “how” it is
accomplished. The “what” isn’t really supposed to change or be
deleted, otherwise you will break your customer’s code which is
programmed to the API. The internals of the software below the
“what” could completely be gutted and it may only have minor
effects to the documentation. Subsequent releases of the
documentation mostly only need to be concerned about what was
added to the API.

The API code can go through many massive overhauls in the versions
leading up to the code freeze of the first release. You can expect:

• The naming of API items to change as the software engineers get in
step with legacy code, new conventions, and each other.

• The naming, number, type, and ordering of arguments to API
items to change radically as they experiment with what’s needed
and works and as they conform to others on the project.

The churn in the API software leading up to the release can be even
more drastic than the top-level GUI changes which require new screen
shots in traditional software documentation projects. In fact, code
freeze and beta release to a customer is when promises from software
engineering of no more changes affecting the documentation can be
believed.

Unfortunately, this is pretty late in the release cycle to expect accurate,
complete, and quality documentation, at least for release one.

... Unless the API documentation is revisited from a holistic point of
view overlooking the whole organization.

tp-tools-ug-02 13

 Chapter 1 Single-Sourcing and API Documentation

Software Engineering

Software engineering organizations cannot afford to have
uncommented code.

• Otherwise the company risks rewriting code every time a new
engineer comes on board just because they didn’t understand what
their predecessor did.

• Software developers know that they are expected to document
what they do. Even if their code is never exposed to the outside
world, they are expected to comment it.

In more recent years, high-tech has meant high turnover for employees
with skills and a thirst for challenge and rewards. Uncommented code
is a very big business risk, so it is often mandated in company coding
standards and conventions for all software engineers to follow.

On a more personal level, every software engineer should realize that
“if you can’t be replaced, you can’t be promoted” and its corollary to
software, “if they don’t understand your code, you can’t be assigned the
whiz-bang new projects and you will be stuck maintaining your old code.”

Information Repository and Tools

Hence, software engineering organizations are already on the verge of
allowing their source code to be the repository for associated reference
information. With just a few minor changes to the format of existing
code comments, third-party tools can extract that information and
create accurate, reliable systems.

Any technical writer charged with maintaining API documentation for
any quickly changing code base will one way or another tell you that
the task shouldn’t be done with tools.

The extent of the tools depend on many factors. At the very least, the
tools need to flag differences in API syntax from one build to the next
so that finding which parameters change isn’t a manual job of digging
through the code to visually match a code item with the external
documentation.

Reusability

Consider one of the buzzwords of software development: code
reusability. In order to employ existing code in other applications, the
engineer has to know what the code does. More often than not, the
engineer turns towards the header and source files to get all of the
information they need directly from the code.

API Documentation Rant

14 TechPubTools User’s Guide

Based on where they obtain information and the requirement to
comment their code, the software engineers are not very far away from
more robust code extraction tools. What they may lack are:

• A template for code comments.

• Code comments having the proper format for an extraction tool.

• Time and desire to mark-up and/or alter existing files.

Send in the Tech Writer

This is where a diligent technical writer comes into play. The technical
writer can:

• Help define the minimum template for all code comments.

• Insert templates into the code.

• Convert any existing code comments into the new format and fix
any language errors in the process.

If the technical writer can’t figure something out, they can flag it for
the software engineer, who ultimately still has the responsibility to
comment the code.

Whereas technical writers may also have limited time and desire, such
work is in more in line with their job description. A tool that extracts
information from the source-code becomes self-serving for the
technical writer.

The extraction tool working on the source code:

• Exposes the deliverables of the software developer in an organized
fashion.

• Gives the technical writer 80% or more of the reference material for
the API documentation.

• Improves the accuracy of the documentation suite, because
prototypes come directly from the code.

• Improves communication between technical writing and
engineering.

• Shifts the effort of documenting and maintaining the API reference
material to the owning engineering.

What You Get

This work directly benefits the technical writer in all subsequent
releases, because the software engineers will start maintaining their
reference material and reusing your templates for new code items.

tp-tools-ug-02 15

 Chapter 1 Single-Sourcing and API Documentation

The technical writer’s efforts also provides some good public relations
with software engineering if re-formatting and re-writing of code
comments does not fall in bulk onto the software engineer’s to-do list.

Let’s not forget the benefits to the whole organization through:

• Improving the readability of the code.

• Helping bring new employees up to speed.

• Enforcing coding practices.

• Providing a basis for code review.

• Easing the burden of the technical publications group.

• Providing a comprehensive HTML system to object-code and
source-code customers.

Source Code Extraction Tools

In general, tools that extract things from the code, sometimes called
auto-documentation tools, are written by software developers for
software developers. This means that the tools have already made
most of the important decisions about what should be documented.
And they can do their work automatically.

Although Doxygen (www.doxygen.org) is mentioned as an
open-source solution to create reference documentation directly from
the code, other tools are available.

I've run Doxygen on code that had no comments that Doxygen
recognized. The HTML output (with no plain English) was still pretty
impressive and better than I could have done by hand. Doxygen:

• Traces the code, something that I wouldn’t want to have to do by
hand.

• Documents who is using what function, where that function
resides, etc.

• Generates hierarchy diagrams.

• Hyperlinks to code items that it knows about when it comes across
it other areas.

• Has optional features to show source code and also to hyperlink
you to specific areas in the source code.

The framework that it builds should not be underestimated and would
be really hard to create by hand in a (FrameMaker) manual.

API Documentation Rant

16 TechPubTools User’s Guide

Concerns about Auto-Documentation Tools

Manuals created from auto-documentation tools may not always be as
complete or as easy to read as those manuals created “by hand.” The
counter arguments to this are:

• If your organization presently has no API documentation, source
code extraction tools give you a significant head start.

• Even those wonderful, easy-to-read, manually created API
documents did not evolve overnight into completeness. If your
tool has holes in its coverage:

» You manually document the holes in the system and let the tool
help do everything else. Don’t re-invent the wheel.

» You can have your software development organization
enhance the open-source tools to achieve what you need.

• Completeness is relative.

» Many times the code item name and its syntax are descriptive
enough to the audience when viewed from a header or source
file.

» If the code items that the audience is expected to use are well
documented, the documentation may not need to be as
complete or as detailed for other code items that might be
exposed.

» The API evolves and so does the documentation. Do what you
can when you can, and let feedback from others (internal and
external to your company) help prioritize what needs to be
improved.

» The completeness of the API documentation can be a recursive
process.

• With the appropriate company processes in place, the same
excellent writing can be achieved regardless of where the
information resides.

Writing Quality in the API Documentation

The issue of writing quality in the API documentation may never be
resolved, because the software engineers own the code. The trade-off
for getting them to update their comments to reflect the code at the
same time they are making changes to the code is probably worth any
language errors that they might introduce and that don’t get fixed
immediately.

tp-tools-ug-02 17

 Chapter 1 Single-Sourcing and API Documentation

If the software engineers know their writing (e.g., comments that get
extracted into the API documentation) will be exposed to a wider
audience:

1 They can willingly let the technical writer edit their comments.

2 They can let management dictate that the technical writer edit their
comments.

3 The technical writer can leave it as the engineer wrote it.

With regards to number 3: let's look at the big picture. Is it really going
to matter to the API documentation audience - other engineers -
whether the engineer who wrote the comments had a typo, a run-on
sentence, or other language blunders? Will the audience - other
engineers - even see the error [maybe] or care [no, not if the other
information is accurate]? The audience cares more about information
than its delivery. They also recognize that they can’t throw stones at
things that their own code might be guilty of.

Note: This is not meant to advocate releasing API documentation that is riddled
with errors in the form of typos and grammar mistakes. It is meant to temper
our inner control freak who might impose unrealistic expectations and
processes on others in our effort to obtain grammar-error-free
documentation nirvana. With compressed development cycles and frequent
releases, there will always be next release to incrementally improve things
more. When issues of wording ownership arise in source files, next release
can often be a better time to divorce text from its author (the software
engineer) with less resistance.

Auto-Documentation Benefits

One of the benefits of auto-documentation tools is that reference
information is located where it belongs: in the source code. It is not
separated from the code in a FrameMaker book that technical writers
must constantly maintain through every whim of the software
engineer's ordering, adding, and deleting of arguments. Those things
are taken directly from the declarations and definitions. It's automatic,
and code references in the published documentation are never out of
sync with the code, providing that the tool is run against the code at
code freeze or other applicable points in time.

As was mentioned, auto-documentation tools can generate documents
that have accurate code prototypes, but don’t generate code examples
or prolific explanations. However, the theory is that if the technical
writer isn’t spending their time keeping the syntax up to date, they
will have more time to generate the code examples or prolific
explanations, which they would have to do anyway.

The Future of (API) Documentation

18 TechPubTools User’s Guide

The Code Can Contain More Information

Another argument against auto-documentation tools was that the
source code contains little information. The source code contains data
points, lists of code items and their classification, but little description
of what they do, what they mean, or why they are the way they are.
Neither the code nor the code comments explain the API to an external
user.

Just because the source code doesn’t contain more information, doesn’t
mean that it can’t.

And even if the source code never does contain more information due
to company politics, this does not mean that auto-documentation tools
can’t still be employed. Many such tools provide hooks that allow
external documentation to be included in the build, in addition to
hyperlinking to and from an external systems. Auto-documentation
tools can still provide many benefits to the technical writer even in the
rare cases of resistance from the software engineers.

Software Engineers as Technical Writers

Just because software engineers may have a list of deficiencies that
make them less than ideal for writing API reference material, this
should not be used to dictate where the information resides. They are
the subject matter experts. Maintaining information in the source files
puts it “in their face” in the hopes that they do update the information
as soon as it changes. The process and the working relationship with
the technical writer will determine the final quality regardless of
where the information physically resides.

Auto-documentation tools require a level of trust that the software
engineers are keeping their code comments up to date. If they can’t
keep their own code comments up to date, what makes us think that
they’ll remember to tell a technical writer?

The Future of (API) Documentation

The immediate future for software is that the source code has to be
able to describe itself. The code comments need to be in a standard
format that can easily be extracted with the syntax into online
reference systems. This is paramount for both open-source and
proprietary code if software companies want any longevity and
reusability out of their code.

tp-tools-ug-02 19

 Chapter 1 Single-Sourcing and API Documentation

Whereas I believe that XML will (initially) provide only marginal
added-value to run-of-the-mill documentation, this is not true when it
comes to API documentation. (a) If the source code contains comment
that can be extracted, (b) if those comments can contain HTML syntax
(as is the case with open-source Doxygen comments), and (c) if the
need remains for the source code to describe itself, then XML tags
within the code comments is a natural extension.

If the source code itself is well commented and marked up
appropriately with descriptive XML tags, the hooks are then in place
for having the source code for software solutions served up from data
bases.

Code Generation

When the ever-increasing power of processors is taken into
consideration, the speed-related drawbacks to interpreted languages
(like Perl) become less noticeable. The fact that you can view the
source before you execute it (when not compiled) becomes a
significant advantage for security, for reliability, and for custom
solutions.

Combine this with database tools that use XML tags and
self-documented code.

What we’d have would be source code that is truly re-usable, because
tools would be able to search large databases (CVS repositories) and
find useful, commented code fragments.

We would then be on the verge of having Code Generation tools that
can find, combine, and compile any number of permutations of
distributed source code.

Software Public Libraries

If I could start a business that would make me wealthy, topple
Microsoft, and change the world for the better, I would create a
Software Public Library (SPL).

The SPL has two initial revenue streams:

• Code Check-In.

• Code Check-Out

Each would have sliding scale depending upon the expectations
placed upon SPL with regards to test, verification, certification,
compilation, and packaging. In other words, if you want to check out a

The Future of (API) Documentation

20 TechPubTools User’s Guide

fully certified and packaged executable, the cost will be higher than
untested code submitted by some lone Software Engineer on a pig
farm in Sweden and that you have to build yourself.

Get More Thinkers Involved

Today the price of a finished commercial program (executable) is less
than the price of acquiring its source code. The new paradyn keeps the
executables priced affordable (at or below present levels) while
making source code significantly cheaper. Although the sliding scale
still accounts for levels of testing and certification, acquiring the source
code should be a realistic and affordable proposition to any registered,
independent software engineer in the world. The intent is to get more
minds working at improving the software that the world uses.

The software engineer is encouraged to check in their improvements to
the SPL. The nature of their fix and its urgency can determine how
quickly the normal SPL processes move the change from untested to
certified. Of course, larger software organizations can pay to speed up
the process if they don’t become an SPL-certified contributor who
perform the tasks required to make a release available in the SPL at all
levels.

Royalties for Their Efforts

A rating system based on the number of lines of code, a weighting of
the functionality in the program, and other factors can determine a
royalty percentage that can be paid to the software engineer for that fix
that is used in all subsequent for-profit derivative programs and
certified executables.

(New) Copyright Protection

For brand-new technology, the SPL could

• Limit the source code exposure for a short time depending upon
the level of copyright protection.

• Limit check-in and availability of altered source code unless the
new implementation is truly unique and better.

• Negotiate appropriate fees and royalties for derivative products to
include the technology.

• Facilitate exposing the technology’s interface so that others can
build around it.

tp-tools-ug-02 21

 Chapter 1 Single-Sourcing and API Documentation

Because proportional royalties are paid for derivative products, no
revenue is lost for contributions that remain in use. The incentive for
proprietary solutions becomes less. The life of the solution - in whole
or in part - and hence the length of time that royalties continue to be
paid becomes directly proportional to the openness of the solution that
fosters wide-spread acceptance. If the solution works and is open, and
if nobody is being robbed for their creative efforts, the incentive to
“re-invent the wheel” decreases while the incentive “to spend our time
building on what already works” increases.

To bring the copyright policies of the world in line with one another,
the SPL is intended from the onset to be a government regulated
monopoly.

• On the one hand, all published/commercial (software) works
would be required (by law) to be made available in the library:
executables, DLLs, object, and commented source code.

• On the other hand, check-out and download requires registration
and payment. The check-in process can determine the extend to
which a new product is unique or derivative. Another sliding scale
determines the percentages and duration for royalties back to the
originator.

New SPL Revenue Streams

The “archeology” division of SPL would actively solicit source code
for outdated, unsupported software (like DOS, WordPerfect 5.0, BIOS,
etc.) After commenting and tagging, it could be made available.

The “custom solutions” division of SPL would handle requests for
enhancements and porting to old and new platforms and operating
systems. SPL could help manage supply and demand in terms of
contracting and scheduling software engineers based upon requests.

The “test and certification” division would provide various levels of
quality assurance, virus detection, verification, certification, and
integration.

The “code integration and generation” division of SPL would
automate the process for individuals to specify an application made
out of components.

What You Get

In the future,

• Your hardware can be supported much longer.

The Future of (API) Documentation

22 TechPubTools User’s Guide

• Your software reliably does what you need it to do.

• You can afford custom software.

• Your data remains compatible.

• You can do it yourself if you're so inclined.

The keys to this better and brighter future for software are knowing:

• What code is available [all versions].

• What is in the code [XML tagging and extraction].

• What the code does [API documentation and code comments].

tp-tools-ug-02 23

Chapter 2 Environment and Tools

Aside from discussing the environment that I work in and the tools
that I acquired to achieve my organization’s goals, this chapter also
serves as a disclaimer regarding the suitability of TechPubTools in
your environment.

Your network environment can vary greatly from mine.

What is important to note about my environment is that I use a UNIX
file server that both my Windows 2000 and UNIX workstation access. I
use an X-Windows emulation program on Windows 2000, so that I can
go back and forth between my Windows applications and my UNIX
applications without thinking about it.

There are many ways to achieve the same or equivalent functionality
that I enjoy. Moreover, it is possible to achieve the same goals of the
TechPubTools in a pure-Windows environment and possibly even a
pure UNIX/Linux environment. This is left as an exercise for you to
accomplish.

My Environment

Below are the operating systems and off-the-shelf tools that I use or
have access to in order to implement the TechPubTools.

Microsoft Windows 2000, version 5.0095 with Service Pack 1. This is my
main work environment from which I operate FrameMaker,
Mif2Go, my HTML editor of choice, and DevaSearch. For more
information, refer to www.microsoft.com.

Adobe’s FrameMaker 6 running under Windows 2000 is used to create
the printed and PDF documentation. FrameMaker (FM) files are
single-sourced into an HTML system. For more information, refer
to www.adobe.com.

24 TechPubTools User’s Guide

FrameMaker is used to create “structured” information that is
intended to be handled like a printed book even if electronic in
nature. In particular, this means that:

• Information is organized with a table of contents.

• Die-hard readers can go from the beginning to the end of this
documentation and not miss any topics.

• All topics link to their previous and next topics, which helps
orient the reader when displayed from the index or table of
contents.

Omni Systems Inc. Mif2Go, version upg33u20.zip, an add-on program
for FM that among other things can convert from FrameMaker’s
MIF format to HTML. For more information, refer to
www.omsys.com.

• WebWorks Publisher Professional (WWP) could also be used to
achieve the same goal as MIF2Go.

• At the time of writing, Mif2Go was a lower cost solution over
WWP and seemed to provide more flexibility.

Ulli Meybohm’s HTML EDITOR Phase 5 (Release 22.09.1999). This is a
FreeWare program in German for editing HTML files. If you
already have a good HTML editor or don’t understand German,
you don’t need this. For more information, refer to
www.meybohm.de.

Sun Microsystem’s Solaris 2.7 (UNIX) on a Sun workstation. This is a
machine owned by Voyant’s Software Engineering department
that I use infrequently to run Shell scripts and Perl programs. More
importantly, we use a UNIX file server that both Windows and
UNIX can access. This is not needed if you port everything into a
Windows-only environment. Refer to www.sun.com.

• UNIX Shell scripts are used to create control much of the
process, because this is Voyant’s development environment.

• Some of the Shell scripts perform CVS commands, a source
code management and version control system.

• Batch files in the Windows environment could accomplish
much of the same thing.

StarNet Communications Corp.’s X-Win32, version 5.1.1. This is an
X-Windows desktop emulation environment for Windows 2000.
This is what gets me access to the Sun workstation. This is not
needed if you port everything into a Windows-only environment.
You can find many ways to access a UNIX environment, if that is
even a requirement. For more information, refer to
support@starnet.com.

tp-tools-ug-02 25

 Chapter 2 Environment and Tools

Dimitri van Heesch’s Doxygen, version-1.2.11. This is under the terms
of the GNU General Public License (e.g., open-source). This can be
ported to a Windows-only environment. For more information,
refer to www.doxygen.org.

• Doxygen is a documentation system for C++, Java, IDL (Corba,
Microsoft and KDE-DCOP flavors) and C. Doxygen is an
open-source tool used to extract code prototypes and specially
flagged code comments from C/C++ source code.

• JavaDoc is another open-source tool that accomplish many of
the same things for the Java language; JavaDoc output could
easily be incorporated into this solution.

• Doxygen is also used imperfectly on Perl files and on an
in-house Pascal-like programming language (IVE) files. This
required the use of input filters which fake out Doxygen in
what it sees and recognizes.

DevaHelp’s DevaSearch. This is used to implement the full-text search.
Although the tool is used in the Windows 2000 environment, the
resulting HTML and Javascript is cross-browser, cross-platform.
For more information, refer to www.devahelp.com.

Perl, the programming language used in the scripts. Perl programs are
used to change the content of the HTML files in specific areas.
You’ll need the Perl interpreter for your environment. I use Perl in
the UNIX environment. Perl is available in Windows-only
environment. For more information, refer to www.perl.org.

Just because this solution uses these off-the-shelf tools does not mean
that other tools cannot be used instead or in addition. This
open-source solution is meant to provide you with ideas and
foundation upon which your technical publication’s solution can be
built.

Home-Grown Tools

The following are tools that were developed in Perl at Voyant
Technologies, Inc. and are the heart of these TechPubTools. They are
listed with a brief description and are covered in more detail in later
chapters as well as the code reference portion of the HTML system.

voyant_nav.pl swaps out the head information, navigation controls,
and copyright information. It also extracts temporary files used for
the table of contents and index.

voyant_mt_app.pl uses the temporary files for the table of contents
and generates a series of script files for the Java applet that are the
master navigation over the whole system.

Directory Structure

26 TechPubTools User’s Guide

voyant_indexer.pl uses the temporary files for the index and generates
a series of HTML files that are the master index over the whole
system. It also performs word-chunking that expands the number
of index entries and turns it into more of a concordance, a useful
feature for programs.

voyant_latex.pl changes template LaTex files that were generated
by Doxygen before LaTex is used to create PDF files.

dox_bug_filter.pl performs input filtering of source files into
Doxygen to change elements, such as comment styles for more
reliable output.

dox_ive_filter.pl performs input filtering of source files into
Doxygen. The input files are known to be in the IVE language
(Pascal-like). This imperfect filter makes those input files look
more C-like in order for proper handling by Doxygen.

dox_comment_chg.pl performs input filtering of source files into
Doxygen to change comment styles for more reliable output.

dox_chg_not.pl changes Doxygen comment styles. Intended to be
used on source files that were initially documented using a style
that the coding conventions later changed.

pl_comment_chg.pl performs very imperfect input filtering of source
files into Doxygen. The input files are known to be in the Perl
language. This imperfect filter makes those input files look more
C-like in order for proper handling by Doxygen.

Although these tools are implemented and run in the UNIX
environment, they could be used in the Windows environment and
called from a batch file. (There are only a few areas where explicit
UNIX system calls are made to generate lists and copy files. Equivalent
system calls to DOS commands can accomplish the same task.)

Directory Structure

tp_tools The top-level directory used in the creation of the online
HTML system and contains the UNIX Shell script files (given with
“b” extensions) and the master template files for the navigation,
table of contents, and index. It also contains the Doxygen project
files and other files used in the generation of HTML.

common_files Contains GIF and CSS files that are used in all
subdirectories of doc_publish. Also contains default HTML
files that are part of the code reference sections. Depending
upon the content of the source code, Doxygen overwrites these
files.

tp-tools-ug-02 27

 Chapter 2 Environment and Tools

doc_publish Contains all files in the HTML system intended for
distribution to readers. Moreover, everything from this level
down is either under source control (CVS) or can be
re-generated. This level contains the series of HTML files that
make up the table of contents and index, as well as the
introductory topic and PDF overview.

book_help_on_help Contains all HTML and GIF files
associated with the how to use the help system. The source
FM files are located elsewhere. This directory also contains
copies of the Mif2Go INI files that configured the HTML
output generation.

book_tp_tools Contains all HTML and GIF files associated
with the description of TechPubTools. The source FM files
are located elsewhere (in src_fm). This directory also
contains copies of the Mif2Go INI files that configured the
HTML output generation.

book_... Other directories can be created with information
that is maintained in FrameMaker and exported to HTML
using a tool. In order to support additional book
directories, the master files need to be updated accordingly
as well as the controlling shell scripts.

cref_tp_tools Contains all HTML and GIF files associated
with the API source code being documented. The files are
generated using Doxygen or another tool. The source code
files are located elsewhere.

cref_... Other directories can be created for information that
is extracted from the source code into HTML using a tool.
In order to support additional cref directories, the master
files need to be updated accordingly as well as the
controlling shell scripts. When using Doxygen, the
respective Doxygen project files need to be created which
generate their output here.

DevaSearch Contains all HTML and JS files associated with the
full text search. The files in this directory are generated
after all other aspects of the system have been created.

print_pdf Contains all PDF files associated with the other
directories. The PDF files could reside elsewhere, but a
design decision was made to collect them all here for the
user.

src_fm A directory containing the FrameMaker documents used
in generating an HTML system. In the case of this
TechPubTools project, this is the source directory the Mif2Go
INI files that then generates HTML in book_tp_tools.

Directory Structure

28 TechPubTools User’s Guide

src_perl (Actually a symbolic link to) a directory containing the
Perl code used in generating an HTML system. Refer to the
perl directory. This was included here to simplify the creation
of the zip file.

zdoc_merge A temporary directory used in the generation of the
series of HTML files for the index and table of contents. The
temporary directory provides more control over what is
included and excluded and facilitates testing.

zlx_tp_tools A temporary directory used by Doxygen to hold
the LaTex files one API source code project and to generate
associated PDF files.

zlx_... Other temporary directories can be created for API source
code. They are used by Doxygen to hold the LaTex files and to
generate associated PDF files.

perl A directory containing the Perl code used in generating an
HTML system. In the case of this TechPubTools project, this is also
the source code directory for the tp_tools.dox Doxygen project.
Doxygen generates HTML in cref_tp_tools and LaTex/PDF in
zlx_tp_tools.

tp-tools-ug-02 29

Chapter 3 FrameMaker and Mif2Go

Adobe’s FrameMaker is used to create the printed and PDF
documentation. FrameMaker (FM) files are single-sourced into an
HTML system using Mif2Go.

It is beyond the scope of this manual to discuss all of the details for
effective use of either of these tools.

• For more information on FrameMaker, refer to www.adobe.com.

• For more information on Mif2Go, refer to www.omsys.com.

What is appropriate for this chapter are the tips-and-tricks that are
employed to get these tools working together with each other and the
TechPubTools to achieve a comprehensive HTML system.

FrameMaker

FrameMaker (FM) is used to create “structured” information that is
intended to be handled like a printed book even if electronic in nature.
In particular, this means that:

• Information is organized with a table of contents (TOC).

• Die-hard readers can go from the beginning to the end of this
documentation and not miss any topics.

• More realistically, it means that when readers land on a topic by
whatever means (e.g., TOC, index, external hyperlink,
context-sensitive links), the book’s structure allows them to easily
acquire background information from previous topics and more
detailed information from the next topics.

However, just because a FM book structures the information, this does
not mean that it any less useful in an online format. In fact, I believe
that this effort to provide organization and order makes the

30 TechPubTools User’s Guide

information even more useful when presented online, mostly because
it provides the reader with at least one form of navigation with which
they are already familiar.

FM Formats

One could argue that the key to effective use of FrameMaker is:

• to have a bullet-resistant style/format guide.

• to adhere to the formats defined.

• to minimize format overrides.

When single-sourcing the FM files into other output formats, such as
HTML, the enforced use of the style guide plays an even greater role.
Everything accomplished in FM needs to be mapped in some manner
to an appropriate construct in the output medium. Moreover, online
output imposes requirements for both consistency and flexibility on
the styles and formats.

Generally, the formats employed in a FrameMaker document tailor it
for print or PDF purposes. When exporting the document into, say,
HTML, the export tool needs to be told what the topic boundaries are.

Our style guide has:

• Five (5) paragraph formats that define the chapter chunks:

• TitleChapter

• TitleAppendix

• TitleFront

• TitleIndex

• TitleIntro

• Three (3) paragraph formats that define the section chunks:

• Head1

• Head2

• Head3

All eight (8) of these paragraph formats are used in the generation of
the Table of Contents. Moreover, they are used to define sections that
become stand-alone HTML files when exported.

tp-tools-ug-02 31

 Chapter 3 FrameMaker and Mif2Go

In other words, these FrameMaker paragraph formats can be followed
by any number of any other paragraph format. Only when another of
these eight (8) formats appears is a new HTML document created. The
text used with these eight formats help determine the HTML file name
and subsequent hyperlinks.

On occasion, these Title or Head formats are followed by only a single
sentence or paragraph, which is acceptable in print/PDF but results in
a very small HTML topic. To address this, three additional “keep with
previous” (Kwp) paragraph formats are defined.

• Head1Kwp (=Head1)

• Head2Kwp (=Head2)

• Head3Kwp (=Head3)

These HeadnKwp have the exact same definitions as their associated
Head format and are used in the creation of the Table of Contents. The
only difference is that these HeadnKwp formats are purposely missing
from any definitions used by the HTML export tool for HTML file
splitting. When a HeadnKwp is used in place of the Headn, it does not
cause the forking of a new HTML file.

The intend of these additional (duplicate) paragraphs is to give the
technical writer more control over the HTML file size and topic
chunking. When the technical writer has nearly completed the manual
for print/PDF generation, they can go through the FM book and
determine which sections are small and could be combined with the
next or previous section. They change the Headn format at the
boundary between two sections to its associated HeadnKwp.

Note: Your format names may be different than those that Voyant uses. The point of this
discussion is tip on how the HTML export tool can be told not to generate new
HTML files.

Mapping FM Formats to HTML Constructs

HTML purposely has just a few constructs with which to tag
information.

• Headings: <h1></h1>, <h2></h2>, <h3></h3>

• Paragraph text: <p></p>

• Pre-formatted text: <pre></pre>

For proper viewing in HTML, all FM formats need to mapped to one
of these. Thankfully, the cascading style sheet (CSS) permits the
definition of classes that can further define formatting to one of these
tags.

32 TechPubTools User’s Guide

Even though my FrameMaker environment has four levels of
paragraph formats - Title<...>, Head<1>[Kwp], Head<1>[Kwp],
Head<1>[Kwp] - they are all mapped to h1. The <hn> tags in HTML are
used for display and not necessarily hierarchical relationships.

[ParaStyles]
TitleChapter=h1
TitleAppendix=h1
TitleFront=h1
TitleIndex=h1
TitleIntro=h1
Head1=h1
Head2=h1
Head3=h1
Head1Kwp=h1
Head2Kwp=h1
Head3Kwp=h1

The Voyant documentation sometimes has programming code or
command-line syntax that would be incorrect if permitted to
automatically word-wrap based on the browser’s Window size. The
appropriate FrameMaker code<...> paragraph format provides the
correct font and layout characteristics in the print/PDF. In order to
assure that no inadvertent word-wrapping occurs in the HTML
output, these FM paragraph formats are mapped to the HTML <pre>
tags.

[ParaStyles]
Code=PRE
Code1=PRE
Code10pt=PRE
Code11pt=PRE
Code2=PRE
Code3=PRE
Code4=PRE
Code4 (body Indent)=PRE
Code5=PRE
Code9pt=PRE
CodeAPI=PRE

It is assumed that all other FrameMaker styles encountered during the
export to HTML will be mapped to a <p> style with an appropriate
class refinement (that the cascading style sheet controls).

The mapping of styles using [ParaStyles] is a construct that is part
of Mif2Go in one of its INI files. However, the ability to map styles is a
fundamental part of any other Help Authoring Tools, such as
WebWorks Publisher (WWP). Such tools will have a configuration tool
or file that can establish the same settings.

tp-tools-ug-02 33

 Chapter 3 FrameMaker and Mif2Go

Online Use and Conditional Text

If you take the position of many in the technical writing profession
that the information should be tailored for the delivery medium, then
FrameMaker is the tool that can help achieve this goal while keeping
with the single-source techniques.

Using FrameMaker’s conditional text feature, a single FM document
can contain language that is specific to the output format. This is most
likely to occur when creating cross-references. If your text isn’t
completely neutralized from:

(Print/PDF) Please refer to “Subject X” on page n.

(Online) Please refer to the topic “Subject X.”

to simply:

Please refer to “Subject X”.

you can still employ conditional text so that both the print and online
versions co-exist in the same document.

FrameMaker offers much freedom in how you structure your
conditional text. However, most who use conditional text recommend
that it be employed at the paragraph level, rather than at the sentence,
phrase, or word level.

The issues with conditional text fragments smaller than paragraphs
center around where spaces and punctuation should appear. Who
owns the spaces and punctuation? The parent text or the conditional
fragment.

Particularly when multiple writers are involved, it easy to create
inadvertently fragments that don’t have enough or have too much
leading/trailing spaces and punctuation for the selected condition.

Cascading Style Sheet

The cascading style sheet (CSS) in HTML can help achieve both
consistency and flexibility in the HTML output. However, a
prerequisite for the CSS is that the source FrameMaker material was
consistent in its use of paragraph formats.

The CSS centralizes definitions for the display and layout. Flexibility is
obtained by making some definitions less specific, such as a
font-family like “serif” or “sans-serif”, which makes more allowances
for what the fonts the reader has available.

Mif2Go

34 TechPubTools User’s Guide

In our case, the Mif2Go product does an efficient job of exporting the
FM formats into the CSS and can change the formats as it converts.

Mif2Go

Omni Systems Inc. Mif2Go, is an add-on program for FrameMaker that
among other things can convert from FrameMaker’s MIF format to
HTML.

Mif2Go has employs INI files to establish the configuration. It is
beyond the scope of this document to discuss all Mif2Go options and
their configuration in the INI files.

Instead this section will focus on the aspects of the configuration that
allows the HTML output from Mif2Go to be plugged into a bigger
HTML system.

Note: This section discusses items that are specific to Mif2Go. However, it should be
noted that WebWorks Publisher Professional (WWP) could be used to achieve the
same tasks as Mif2Go. At the time of writing, Mif2Go was a less expensive than
WWP.

The following directories contain examples of both the mif2htm.ini
and the mif2htm.ini files.

• doc_publish\book_tp_tools

• doc_publish\book_help_on_help

Fonts Mapping

The Mif2Go product does an efficient job of exporting the FrameMaker
paragraph and character formats. It can change the formats as it
converts.

For example, the serif fonts (such as Time New Roman or Palatino)
have historic readability reasons that make them appropriate for body
text intended for print. The serifs are the little horizontal marks at the
tops and bottoms of letters. Over time and practice reading, the human
eye is trained to look at the shapes of words rather than the individual
letters within the word. The serifs provide more definitive shapes to
words to facilitate their recognition.

However, monitor resolution of the serif’s as pixels can seriously
degrade the readability when used online. The “chunky” nature of
pixels makes the serifs more of a hindrance for recognizing word

tp-tools-ug-02 35

 Chapter 3 FrameMaker and Mif2Go

shapes. For this reason, sans-serif fonts (such as Ariel or Verdana) are
often used more often for body text online. Verdana is the online font
presently recommended by Microsoft for online documentation.

Aside from the font definitions inside of FrameMaker’s paragraph and
character formats, fonts are defined in:

• The mif2htm.ini file.

• The cascading style sheet.

The main font items that the mif2htm.ini file defines are re-mapping
of print fonts to online fonts.

[Fonts]
Palatino=Verdana
GillSans=Times New Roman
AvantGarde=Verdana
GillSans Light=Times New Roman
Times=Times New Roman
Helvetica=Arial
Courier=Courier New
HelveticaNarrow=Arial Narrow
Helvetica-Narrow=Arial Narrow
Century Schoolbook=NewCenturySchlbk
Common Bullets=CommonBullets

The Voyant corporate style guide for printed documentation
recommends:

• GillSans (sans-serif) for titles and headings.

• Palatino (serif) for body text.

However, online user’s of Voyant’s documentation cannot be expected
to have GillSans or Palatino. Moreover, Voyant’s use of serif and
sans-serifs fonts could be troubling when read from a monitor. The
mif2htm.ini file maps (serif) Palatino to the sans-serif Verdana font
and the (sans-serif) GillsSans to the serif Times New Roman font.

In addition, Mif2Go is used to create the first cascading style sheet
(CSS). Mif2Go creates classes for all paragraph formats in the CSS
giving these the same properties as the owning FrameMaker
document unless mapped otherwise in the mif2htm.ini file.

The CSS is further modified by hand to achieve our desired online
look-and-feel. An important change the we implement is the use of
font-family. This means that our CSS definitions specify one or two
fonts that their system probably has, like Verdana and Ariel. However,
if those aren’t on the system, we specify “serif” or “sans-serif” and let
the browser application locate an appropriate font.

Mif2Go

36 TechPubTools User’s Guide

File Splitting

The mif2htm.ini file specifies how to chunk the information coming
from FrameMaker into individual HTML files. The Voyant style guide
for FrameMaker has:

• Five (5) paragraph formats that define the chapter chunks:

• TitleChapter

• TitleAppendix

• TitleFront

• TitleIndex

• TitleIntro

• Three (3) paragraph formats that define the section chunks:

• Head1

• Head2

• Head3

All eight (8) of these paragraph formats are used in the mif2htm.ini
file in the [HtmlStyle] section to define the exported stand-alone
HTML files.

[HtmlStyles]
TitleChapter=Split Title Filename
TitleAppendix=Split Title Filename
TitleFront=Split Title Filename
TitleIndex=Split Title Filename
TitleIntro=Split Title Filename
Head1=Split Title Filename
Head2=Split Title Filename
Head3=Split Title Filename

Split - specifies that the paragraph format to the left of the equals (=)
is to be used to start a new HTML file.

Title - specifies that the contents of the paragraph format is to be
used in the <title></title> tags of the HTML file.

Filename - specifies that the contents of the paragraph format is to be
used as part of the HTML filename. Mif2Go removes whitespace
and punctuation in the name.

Note: If you do not supply the Filename parameter in the [HtmlStyle] section for a
given FrameMaker format, Mif2Go creates a name from tags that are internal to
FrameMaker. This is the method that the makers of Mif2Go recommend, because
FrameMaker assures that these tags are unique.

The advantage of using the Filename parameter in the [HtmlStyle]
section is that your HTML filenames are more meaningful.

tp-tools-ug-02 37

 Chapter 3 FrameMaker and Mif2Go

The disadvantage of using the Filename parameter in the
[HtmlStyle] section is that you have to assure that the titles of your
paragraph formats (e.g., Title<...>, Headn) are unique within your
chapter (or book). If they are not unique, the HTML files get
overwritten by any subsequent paragraph formats in the chapter (or
book) with the same name that Mif2Go generates.

As will be discussed later, Mif2Go supports chapter INI files. These
can be used to append a prefix or suffix to the generated HTML
filenames. Hence, generated HTML filenames coming from different
chapters do not conflict, although they do have to be unique within a
chapter. Whereas it is admittedly more difficult to assure uniqueness
of titles throughout a book, reducing the title uniqueness requirement
to within the chapter is not as much of a burden on the technical
writer.

For other technical reasons (ordering of the table of contents), chapter
INI files are employed to assign two-digit prefixes that provide a clue
as to which chapter the HTML topic belongs and at the same time
resolve overlap in potential HTML filenames from different chapters.
A further advantage is that, together with the Filename parameter, the
readers (and technical writers) can orient themselves within the
documentation just from the HTML filename.

Post-Processing Tags in Splitting

The mif2htm.ini file defines where the split for new topics happens
using the [HtmlStyle] section. In addition, Mif2Go supplies
pre-defined macros that can be specified in the [Inserts] section of
the mif2htm.ini file.

SplitHead - adds information to the generated HTML file in the
<head>. Among other things, this is used to specify variables, such
as the previous and next topics, so that they remain available
within the topic.

SplitTop - adds information to the generated HTML file at the top of
the <body>. This is used to define navigation control.

SplitBottom - adds information to the generated HTML file at the
bottom of the <body>. This is used to define copyright
information.

The TechPubTools takes advantage of these Mif2Go macros to facilitate
later post-processing by the voyant_nav.pl tool.

Specifically, the TechPubTools employ standard HTML comments that
reside in the file but are not displayed by the browser. The comments
are typically used as pairs (begin and end) and contain a tag name that
TechPubTools recognize.

Mif2Go

38 TechPubTools User’s Guide

<!-- begin voy_common_top --><!-- end voy_common_top -->
used for system-wide common navigation.

<!-- begin voy_fm_book --><!-- end voy_fm_book --> used for
navigation that is specific to a FrameMaker book. In particular, this
means buttons or hyperlinks for previous and next topics.

<!-- begin voy_dox --><!-- end voy_dox --> used for
navigation that is specific to the Doxygen output. This is not
specified in the mif2htm.ini files, but does appear in files used by
Doxygen. Also, the post-processing tools need to know about this.

<!-- begin voy_footer --><!-- end voy_footer --> used for
system-wide common footer material. In particular, this can
contain the copyright information, date of generation, and
document numbers.

Note: The tag names can be changed. However, the change needs to be propagated into
global.pm, mif2htm.ini, the voyant_master.html files, and the main
header files used by Doxygen (voyant_head.txt and voyant_foot.txt).

The intent is to be able to quickly update the navigation or copyright
information within each HTML file of the system without having to
re-generate the HTML files from scratch. This is useful when it is
known that the content hasn’t changed, but a new date stamp, say, is
required in the copyright.

The technique is:

• The HTML files are generated by Mif2Go and Doxygen with these
tags where required.

• At generation time, the information between the begin and end
paired tags is empty or minimal.

• The first task performed by the post-processing programs (e.g.,
voyant_nav.pl) is to locate these tags in the supplied master
template files (e.g., voyant_master_nav.html). The information
between the begin and end tags from the master file is stored.

• The post-processing program locates these tags in the individual
HTML files and replaces information between the begin and end
tags with the information from the master file.

• Post-processing can be performed any number of times (using
different master files) without requiring the content to be
regenerated with Mif2Go or Doxygen.

An additional tag, <!-- begin voyant_variables -->, is created by
Mif2Go. It is used to store information about the FrameMaker topic.
This HTML comment contains a ## separated list of paired items (a
flag, ## separator, and content) needed for navigation.

tp-tools-ug-02 39

 Chapter 3 FrameMaker and Mif2Go

• ##curr##<$$currfile>## - Flag for the current file and the
Mif2Go variable that writes the current filename here.

• ##prev##<$$prevsfile>## - Flag for the previous file and the
Mif2Go variable that writes the previous HTML filename here.
Without any post-processing, Mif2Go does not link the first topic
of a given chapter to the last topic of the previous chapter.

• ##next##<$$nextfile>## - Flag for the next file and the Mif2Go
variable that writes the next HTML filename here. Without any
post-processing, Mif2Go does not link the last topic of a given
chapter to the first topic of the next chapter.

• ##firstlast##<$$firstsfile>#<$$lastfile>## - Chapter
first-last flag and the Mif2Go binary variables.

• ##firstlast##1#0## - indicates the current file is the first
topic of the chapter. This is the flag that adds the topic to the
hast table for first topics.

• ##firstlast##0#1## - indicates the current file is the last
topic of the chapter. This is the flag that adds the topic to the
hast table for last topics.

• ##firstlast##0#0## - indicates the current file is a topic in
the chapter.

Below is an excerpt from the [Inserts] section of the mif2htm.ini
file.

; The following three macros in the [Inserts] section
; are intended to each be on one line.
[Inserts]
SplitHead=<!-- begin voyant_variables
##curr##<$$currfile>##prev##<$$prevsfile>##next##<$$nextfile>##fir
stlast##<$$firstsfile>#<$$lastfile>## -->

SplitTop=<!-- begin voy_common_top --><!-- end voy_common_top --><!--
begin voy_fm_book --><p align="right" class="nav"><a
href="<$$prevfile>"><Previous Topic> <a
href="<$$nextfile>"><Next Topic></p><hr><!-- end
voy_fm_book -->

SplitBottom=<!-- begin voy_footer
--><hr><center><P><small>PROPRIETARY
For Voyant Technology,
Inc. Internal Use Only.
April 2001</small></center></p><!-- gcm
--><!-- end voy_footer -->

Boring Detail: Mif2Go had limitations about providing links to
previous or next HTML topics at chapter boundaries (e.g., at the
very first topic or the very last topic, respectively.) However, at the
end of voyant_nav.pl post-processing, the hash tables do know this

Mif2Go

40 TechPubTools User’s Guide

information. As such, those first and last topics are revisited to
update their previous and next links to allow sequential browsing
through the book over chapter boundaries.

Note: In order for the fixing of previous/next links at the chapter boundaries to work,
you have to use chapter INI files and choose file prefixes in a manner that,
when UNIX sorted, provides the correct relationship of the FrameMaker
chapters to one another.

Chapter Ordering

Mif2Go has a few mechanisms that I use for getting chapters into the
correct order, and for assigning topic names that reflect both its content
and its order.

• [FileIDs] in the mif2go.ini is used to define a two digit number that
separates the contents of each chapter. This prefix is assigned to the
all generated HTML and image files. The voyant_nav.pl tool relies
on this to sort its input file names and know the order of the
chapters. This is very important.

• [FileSequence] in the mif2htm.ini is used by Mif2Go in its attempt
to provide out-of-the-box topic-browsing over the chapter
boundaries. TechPubTools redo that browsing, because Mif2Go
still has limitations.

» Okay: The Next topic at the end of the chapter is the first topic
of the next chapter as defined by the [FileSequence] in the
mif2htm.ini.

» Not Okay: The Previous topic at the beginning of a chapter is
the first topic of the previous chapter as defined by the
[FileSequence] in the mif2htm.ini. Readers expect the Previous
topic to always be the previous topic. At the chapter
boundaries, this means that the Previous topic should be the
last topic of the previous chapter and not the first topic of the
previous chapter.

• [HTMLStyles] in the mif2htm.ini is where the topic splits are
defined and where a portion of the HTML file name is given. In
this case, I use the title as part of the name.

• [HTMLStyleFilePrefix] in the mif2htm.ini adds information to the
HTML filename that would otherwise be used. In this case, I add
the file IDs that were defined in [FileIDs] in the mif2go.ini and a
three digit number that indicates the topics position within the
chapter.

• [HTMLOptions] in the mif2htm.ini defines the parameters for a
built-in variable that counts topics in a file. In particular, I like
having the first topic be a 10 and to have increments of 5 in the
numbers.

tp-tools-ug-02 41

 Chapter 3 FrameMaker and Mif2Go

[FileIDs] in the mif2go.ini

Below is an example of the [FileIDs] section of the mif2go.ini file.
Every FrameMaker file name (minus the .fm extension) that gets
exported from the book is listed. This is followed by the prefix to use
on all generated files.

The voyant_nav.pl tool relies on this to sort its input file names and
know the order of the chapters. This is very important.

[FileIDs]
00-tpt-front=00
01-tpt-intro=01
02-tpt-rant=02
05-tpt-environ=05
10-tpt-shell=10
21-tpt-fm-mif2go=21
22-tpt-doxygen=22
23-tpt-dox_filter=23
30-tpt-globals=30
31-tpt-v-nav=31
32-tpt-v-mt-app=32
33-tpt-v-indexer=33
34-tpt-v-latex=34
35-tpt-v-find-extract=35
41-tpt-m-nav=41
42-tpt-m-tree=42
43-tpt-m-index=43
81-tpt-common=81
tp_toolsIX=9x
tpt-title=ac

[FileSequence] in the mif2htm.ini

In previous versions of Mif2Go, it could not provide topic-browsing
over chapter boundaries at all. The [FileSequence] in the mif2htm.ini is
an attempt to provide topic-browsing over the chapter boundaries.
However, it is not perfect, because the previous topic at the beginning
of a chapter takes the reader to the first topic of the previous chapter
instead of the expected last topic of the previous chapter.

Readers expect that if Next takes them always to the next topic in the
chapter and then to the first topic in the next chapter and if Previous
takes them always to the previous topic in the chapter, then Previous
from the first topic in the chapter should take them to the last topic of
the previous chapter. In other words, they expect browsing that
consistently has a step size of one topic rather than suddenly jumping
a whole chapter.

Still TechPubTools implements this so that some form of browsing
works right after extraction from FrameMaker and before
voyant_nav.pl cleans up the browse sequences.

Mif2Go

42 TechPubTools User’s Guide

[FileSequence]
00-tpt-front=Front Matter
01-tpt-intro=Introduction
02-tpt-rant=Rant
05-tpt-environ=Environment
10-tpt-shell=Shell scripts
21-tpt-fm-mif2go=Mif2Go
22-tpt-doxygen=Doxygen
23-tpt-dox_filter=Doxygen Filters
30-tpt-globals=Global variables
31-tpt-v-nav=Voyant Navigation
32-tpt-v-mt-app=Voyant Master Tree
33-tpt-v-indexer=Voyant Indexer
34-tpt-v-latex=Voyant Latex
35-tpt-v-find-extract=Find and Extract Code Items
41-tpt-m-nav=Master Navigation files
42-tpt-m-tree=Master Tree Files
43-tpt-m-index=Master Index
81-tpt-common=Common Things
tp_toolsIX=Index

[HTMLStyles] in the mif2htm.ini

Readers do not always access an HTML system from the well-defined
starting point (e.g., _start_here.html). If they happen to be using
their Windows Disk Explorer to view the contents of the directory,
they should be able to glance at a file name and have some indication
of what its contents are, assuming of course that the topic itself has a
meaningful title.

[HTMLStyles] in the mif2htm.ini is where the topic splits are defined
and where a portion of the HTML file name is given. In this case, I use
the title as part of the name.

[HtmlStyles]
TitleChapter=Split Title Filename
TitleAppendix=Split Title Filename
TitleFront=Split Title Filename
TitleIndex=Split Title Filename
TitleIntro=Split Title Filename
TitleNoPrefix=Split Title Filename
Indexhead=Split Title Filename
Head1=Split Title Filename
Head2=Split Title Filename
Head3=Split Title Filename
PageLast=Delete

[HTMLStyleFilePrefix] in the mif2htm.ini

Whereas I previously stated with [HTMLStyles] in the mif2htm.ini that
reader-friendly HTML file names are important, context is also
important. By adding a number prefix to the already reader-friendly

tp-tools-ug-02 43

 Chapter 3 FrameMaker and Mif2Go

file names, the relative position of the topic within the manual and
within the chapter can be ascertained at a glance. Moreover, the sorting
by name automatically sorts the files into their order in the manual.

I add the file IDs that were defined in [FileIDs] in the mif2go.ini and a
three digit number that indicates the topics position within the chapter
to the names specified by [HTMLStyles] in the mif2htm.ini.

Three digits as defined by %0.3d may be overkill for most chapters,
but it could support a chapter that had close to 197 topics (assuming a
starting point of 10 and an increment of 5.)

[HTMLStyleFilePrefix]
*=<$$_fileid><$$_splitnum as %0.3d>

[HTMLOptions] in the mif2htm.ini

The goal is to have reader-friendly HTML file names which support a
name sorting of the files that also reflects the ordering of the topics in
the manual. Moreover, whatever naming scheme is used, it should be
flexible.

True, I could start my topic numbering at 0 and increment by 1 within
the chapter. However, by starting the topic numbering for a chapter at
10 and having the increment be 5, other topics could be inserted
manually at later points in time.

Although I realize that as long as I have the FrameMaker source, I’ll
always insert the topic there and re-export.

The real issue is that one day I might lose the FrameMaker source. The
readers probably don’t have the source.

If all that I or my readers had was the HTML files, it would not be an
insurmountable task to create manually new topics and have them be
fully integrated where they belong. Additional tasks would be to:

• update previous/next links on surrounding topics

• update m_tree.script files with the new topics

• update index HTML files with any appropriate entries.

[HTMLOptions]
...
SplitNumStart=10
SplitNumIncrement=5
StartingSplit=No

Mif2Go

44 TechPubTools User’s Guide

Index Tokens

My faith in going with Mif2Go as the export tool was well-founded.
OmniSys’s support and attentiveness to my requests is commendable.

Their support of index tokens is a case in point. Their initial support
required generating HTML suitable for Microsoft HTML-Help.

• This inserted MS Object tags with the key word information.

• The Object tags were at the end of the top rather than at the
location where the index marker was defined.

I had to create some work-around in my tools to convert the object tag
into another format (so that it wouldn’t be seen by the reader). My
index was prevented from giving my readers mid-topic jumps, which
can be helpful in long topics where the writer added index tokens as
aids.

The Mif2Go solution is more general that what I required. How I
employ their solution is now more easily supported by voyant_nav.pl
when it generates the index files. Moreover, it supports mid-topic
jumps immediately after export from FrameMaker without any
modification to the tags.

Specifically in the mif2htm.ini file, I define the following
information:

[Markers]
Index=VoyIndex

[MarkerTypes]
VoyIndex=Code

[MarkerTypeCodeBefore]
VoyIndex=<a name="<$$objectid>" class="v_index" value="

[MarkerTypeCodeAfter]
VoyIndex=">

The result is an anchor tag in the HTML file that can be used as a target
for a mid-topic hyperlink.

<a name=”<$$objectid>” class=”v_index” value=”index entry”>

The <$$objectid> actually comes from FrameMaker that Mif2Go
uses and uniquely identifies the paragraph format. The index entry
was text that was extracted from writer-defined index token in
FrameMaker.

tp-tools-ug-02 45

 Chapter 3 FrameMaker and Mif2Go

The voyant_nav.pl Perl program can easily locate anchor tags. When
they are determined to be of class=”v_index”, it then knows how to
handle the name attribute as part of a fully qualified URL to the HTML
filename and target within the file
(00000FileOwner.html#$$objectid), as well as the text to display to
the reader (“index entry”).

Note: For this to work properly, index tokens should have only one entry per token and
should have no more than two levels.

46 TechPubTools User’s Guide

Notes:

tp-tools-ug-02 47

Chapter 4 Doxygen

Doxygen is an open-source tool used to extract code prototypes and
specially flagged code comments from C/C++ source code as well as
Java and IDL (Corba, Microsoft and KDE-DCOP flavors). Doxygen
creates an HTML system covering the code items.

In addition, Doxygen is also used imperfectly on Perl files and on an
in-house Pascal-like programming language (IVE) files. This required
the use of input filters which fake out Doxygen in what it sees and
recognizes.

For more information about Doxygen, refer to www.doxygen.org.

Although this chapter is specific to Doxygen, much of what the
TechPubTools perform can be applied to JavaDoc output. JavaDoc is
another open-source tool that accomplish many of the same things for
the Java language; JavaDoc output could easily be incorporated into
this solution.

Preparation for Using Doxygen

In order to achieve all of the benefits that Doxygen can offer, you will
need support and buy-off from your software engineering
organization. They will have to:

• Change their code commenting standards to allow comment
extraction.

• Give the technical writer write-access to their source code.

A template will be needed that defines the minimum amount of
information and how it should be laid out. Consistency is important in
API documentation.

The Doxygen Project File

48 TechPubTools User’s Guide

Because the technical writer has much to gain by having Doxygen
incorporated into the development process, it behooves them to
volunteer for much of the work in first getting Doxygen employed. It
is easier to get buy-off of others if they aren’t the ones doing the work.

The technical writer needs to:

• Assist defining the template that is to be used in the source code
for comments. Remember that the engineers own the code.

» Be flexible in the comment styles (//! versus /** ... **/)

» Be flexible in the ordering of information in the templates.

» Don’t give in on things (like @ingroup) that improve the
usability of the generated HTML to a wider audience.

• Make a pass through all exposed source files to change existing
code comments into the new format.

• Make passes through the code at the engineer’s request to edit
their comments.

The Doxygen Project File

The Doxygen project file (or configuration file) is an ASCII text file that
defines among other things:

• Where to look for source files.

• What directories, files, and file extensions to include.

• What type of output to generate.

• Where to generate output files.

The tp_tools.dox file is a Doxygen configuration file that shows how
we use many of its features. The features that are of special interest are:

• Input Filters

• HTML Output and Header/Footer Files

• PDF Output

Input Filters

The input filters are a powerful way to change the source files as they
are read into Doxygen. The FILTER_SOURCE_FILES tag and the
INPUT_FILTER tag in the project file can be used to specify a program
that should be invoked to filter for each input file. Doxygen uses the
output that the filter program writes to standard output.

tp-tools-ug-02 49

 Chapter 4 Doxygen

The TechPubTools use input filters to:

• Change comment styles from //! into /**...**/.

• Change class definitions into a format that is more standard for
Doxygen reporting.

• Change the @bug Doxygen command into @lim command that is
defined in the project file in the ALIASES section.

• Change program files (e.g., Perl, IVE) into a format that is more or
less recognized by Doxygen.

Refer to Chapter 17, “Input Filters to Doxygen,” for more information
on Perl programs available.

HTML Output

Doxygen does a good job of creating an HTML system for the source
files in its project. The GENERATE_HTML and the HTML_OUTPUT tags are
specified in the project file to tell Doxygen to generate HTML output.

In addition, the HTML_HEADER and HTML_FOOTER tags specify two files,
in our case voyant_head.txt and voyant_foot.txt, respectively.
These files contain valid HTML syntax for code that is to be placed at
the top and bottom of the generated HTML. In addition, they insert
HTML comment tags which are used later by voyant_nav.pl.

<!-- begin voy_common_top --><!-- end voy_common_top -->
used for system-wide common navigation.

<!-- begin voy_dox --><!-- end voy_dox --> used for
navigation that is specific to the Doxygen output.

<!-- begin voy_footer --><!-- end voy_footer --> used for
system-wide common footer material. In particular, this can
contain the copyright information, date of generation, and
document numbers.

PDF Output

Doxygen does not generate PDF files directly. Instead, it generates
LaTex files at the same time that HTML is generated.

The GENERATE_LATEX and the HTML_OUTPUT tags are defined in the
project file so that Doxygen generates HTML output.

Then the 45_latex_build.b shell script:

• Calls voyant_latex.pl which creates appropriate refman.tex
and doxygen.sty files for each zlx_ directory in the project.

The Doxygen Project File

50 TechPubTools User’s Guide

• For each zlx_ directory in the project,

• Calls LaTex several times in order to generate the table of
contents, the index, and resolve cross-references.

• Creates a postscript file for each.

• Creates a PDF file.

Doxygen does support a LATEX_HEADER tag that can be used to specify
a personal header for the generated document. The header should
contain everything until the first chapter. In order to accomplish this,
you have to be a LaTex expert. If I would have known more LaTex,
maybe voyant_latex.pl would not have been required.

The PDF output (at the time of writing) does have some limitations.

• The PDF output contains everything in the HTML system,
sometimes with a bit too much white space and redundancy
(which is useful in the HTML system). In the PDF, it starts looking
like filler rather than important content.

• The PDF files from Doxygen/LaTex often have large page counts.
This necessitated warnings in the HTML system about not blindly
printing PDF files.

• In order to change the PDF output and tweak it for your needs,
you need to be a LaTex expert.

• When a Doxygen project uses tag files and is dependent on another
project, the PDF output is incomplete.

However, the PDF output from Doxygen is still useful. It offers more
control in the print layout and in printing page ranges. PDF has its
own search capabilities.

tp-tools-ug-02 51

Chapter 5 Java TOC Applet

The Table of Contents Applet implements a tree view interface similar
to the Win95/NT Explorer. When the applet is enabled in an HTML
page for a project (such as m_toc.html), the content of the tree view
comes from a script file (such as m_tree.script).

For this TechPubTools project, the input m_tree.script file specified in
the Java applet parameters nests individual m_tree*.script files.

The Java applet that powers the table of contents cannot be used and
distributed freely in your HTML documentation system.

However, it is affordable. When we ordered it (in January 2002), the
source code for the applet and the rights to distribute the applet were
$990, I believe. Cheap when I considered how much of my time had
already been consumed trying to re-invent this wheel and that my
versions were lop-sided and severely lacking in comparison.

Note: Because the Java applet had been available for quite some time on this website, it
took several e-mails to eventually find the owner and arrange payment to make our
use and distribution of the applet legal. It was a bonus to get the source code.

Please refer to www.better-homepage.com/java/java-applets-toc.html
or use an Internet search engine with the criteria “java applet table of
contents.”

52 TechPubTools User’s Guide

tp-tools-ug-02 53

Chapter 6 Shell Scripts

UNIX Shell scripts are used to create control the process of generating
the HTML system, mostly because this is Voyant’s development
environment. If we would have had a development environment
based on Windows, I would have used DOS batch files.

Simplicity in usage and understanding were the goals in writing these
scripts. The naming convention illustrates this most readily.

• All scripts begin with a two-digit number that is intended to reflect
the approximate order that the script can be called with respect to
the other scripts.

• Information after the two-digit number indicates what operation it
performs.

• All scripts have a .b extension to indicate (to me) that it is like a
DOS batch file that would have a .bat extension. Although the
extension doesn’t play a role in UNIX, it is a useful device to
separate file types.

• Assuming that the first digit in the script number is the “series,”
then a “0” as the second digit in the script number is the master
and typically calls the other numbers in the series. For example,
30_tp_tools.b calls the 31_perl.b and 31_script.b files and the
32_perl.b and 32_script.b files.

• Scripts beginning with the same number can be called from the
command line in any order, such as 56_nav_script.b and
56_nav_index.b.

• Scripts that have a “5” as the second digit are generally always
called from within other scripts and accomplish several operations
that would be tedious to repeat in higher level scripts. For
example:

• 35_gen_dox.b is called from 32_perl.b and 32_script.b.

• 45_latex_build.b is called from 40_latex_build.b.

• 55_nav_gen.b is called from both 50_nav_update.b and
35_gen_dox.b.

00_build_tp_tools.b

54 TechPubTools User’s Guide

Here is a list of the Shell script files.

• 00_build_tp_tools.b

• 20_cp_com_files.b

• 30_tp_tools.b

• 31_perl.b and 31_script.b

• 32_perl.b and 32_script.b

» 35_gen_dox.b

• 40_latex_build.b

• 45_latex_build.b

• 50_nav_update.b

• 55_nav_gen.b

• 55_nav_cp.b

• 56_nav_index.b

• 56_nav_script.b

Note: Although this TechPubTools project only has one 30_ script file for
controlling Doxygen builds of API source code, it is possible to have many of
them that output to different cref_ directories. Moreover, source code
dependencies can exist between these Doxygen projects that tag files help
resolve. In such an event, the order in which the 30_ script files are called
can make a difference and would be specified in the 00_ files.

00_build_tp_tools.b

The 00_build_tp_tools.b script is intended as the overall control
script. If you had to build the entire system from scratch, you could
call this one script. Many times, I simply list it (using more or less)
and then pick-and-choose which subsequent scripts to call in the
proper order.

When your HTML system is expanded to support additional 30_
script files and cref_ projects for API source code, this script will need
to be updated accordingly

The 00_build_tp_tools.b script does not call every single other
script.

tp-tools-ug-02 55

 Chapter 6 Shell Scripts

20_cp_com_files.b

This script copies over common files into the top-level doc_publish
directory. This includes a small number of small GIF files and the CSS
file.

30_tp_tools.b

This script is an example of a Shell script that controls running
Doxygen. The intent is for there to be a 30_ script and associated
Doxygen project for every API source code project.

The modular design helps keep the build process more efficient. The
intent is that you only run the 30_ scripts for API source modules that
have changed. As such, a valid improvement to these scripts would be
the (CVS) commands to check out the source code for this project
before running Doxygen.

For simplicity, only one 30_ script file (30_tp_tools.b) exists which
calls:

• 31_perl.b and 31_script.b

• 32_perl.b and 32_script.b

In larger systems, I use one 30_ script file with associated 31_ and 32_
script files for each major API area.

Note: You are responsible for creating 30_, 31_, and 32_ script files appropriate
for your API projects.

31_perl.b and 31_script.b

This 31_ script file compartmentalizes the calls required to checkout
the source code for this project from our source code repository (CVS).
Depending upon the nature of the work, it can vary how often I
check-out the source code for a project versus how often I run doxygen
against the source (32_ script files.)

31_perl.b checks out the perl scripts.

31_script.b checks out the b shell scripts.

32_perl.b and 32_script.b

56 TechPubTools User’s Guide

If you use some other source control system, you’ll have to enter the
appropriate commands.

If you don’t use source control system at all, you can comment out all
references to this 30_ script file.

Note: You are responsible for creating 30_, 31_, and 32_ script files appropriate
for your API projects.

32_perl.b and 32_script.b

This 32_ script calls the 35_gen_dox.b script for the given project. It
also performs some error checking. The purpose of these scripts is to
compartmentalize and simplify the running of doxygen against a
given project.

32_perl.b runs doxygen against the perl tools.

32_script.b runs doxygen against the b shell script files.

Note: You are responsible for creating 30_, 31_, and 32_ script files appropriate
for your API projects.

35_gen_dox.b

The 35_gen_dox.b compartmentalizes and simplifies the several steps
that need to be performed before and after running doxygen.

Note: You probably won’t need to maintain this file beyond setting up the paths.

This script prepares the destination cref_ directory by first removing
any HTML pages that may have been left by a previous build in both
the HTML destination directory (doc_publish\cref_...) and the
LaTex destination directory (zlx_...).

It copies over the common files to its HTML destination directory
before starting Doxygen and generating HTML over the top of those
files.

It calls doxygen with the appropriate parameters. The Doxygen project
file, which by my naming convention has a DOX extension, must be in
synchronization with this controlling script with respect to the desired
output directories.

tp-tools-ug-02 57

 Chapter 6 Shell Scripts

Then it calls a tool for generating the tree.script file needed for the
table of contents.

It runs 55_nav_gen.b to be assured that all HTML topics have the
appropriate navigation and that the index file has been generated. This
then copies the tree and index files to the zdoc_merge location.

When finished, it calls the 56_nav_script.b to regenerate the master
table of contents for the entire project. It could conceivably call
56_nav_index.b to regenerate the master index, but this is a slower
program with more calculations.

40_latex_build.b

Not all readers appreciate the online HTML system at all times. It
requires a computer to read the information, and HTML browsers do
not have a lot of control in printing out pages.

PDF files of the documentation system are a useful tool beyond their
electronic display and navigation capabilities, because they provide
more control in what gets printed out. They can print a range of pages
that are laid out more or less as the author intended.

One way that Doxygen achieves its PDF files by first generating LaTex
files. From LaTex, the PDF files are created.

This script first calls voyant_latex.pl with appropriate parameters for
the project, such as the project file containing version numbers and
names. This generates a couple of Latex files that are used later in the
build process.

Then this script creates the PDF files from the Doxygen LaTex output
by calling the 45_latex_build.b.

Note: When you add cref_ projects for API source code, this is one of the files
that you will manually have to update accordingly. You are responsible for
creating 40_ script files appropriate for your API projects. Generally, one
40_ script can cover all projects.

45_latex_build.b

The 45_latex_build.b compartmentalizes and simplifies the several
commands required to create a PDF file from the doxygen Latex
output.

50_nav_update.b

58 TechPubTools User’s Guide

The commands provided are from Doxygen.

The Doxygen generated PDF files are not without their limitations.

• They tend to have really large page counts.

• If the source code for the Doxygen project used tag files and had
dependencies on other systems, the hyperlinks and related
information come up unresolved, incomplete, or missing.

Whereas the second limitation is rather severe, it only affects the PDF
files and not the HTML output. It is presently an inconvenience that
open-source Doxygen may eventually resolve.

50_nav_update.b

This script calls 55_nav_gen.b or 55_nav_cp.b for all projects in the
HTML system.

All directories that are to be included in the system should have a line
in this script so that they can be appropriately processed.

There is no requirement that 55_nav_gen.b be called with the same
master file for each directory.

A valid argument can be made that the navigation and/or copyright
could be different from directory to directory. However, when the
same master file is used for all directories, changes can be made in one
place and propagated throughout the system.

A more useful variation of this in quickly re-purposing the system is to
have multiple 50_ scripts. The 50_ scripts are identical in terms of
directories but reference different master files for different purposes.
For example, 50_nav_update_internal.b could specify
master_internal.html in the 55_nav_gen.b calls for all directories,

tp-tools-ug-02 59

 Chapter 6 Shell Scripts

while 50_nav_update_external.b specifies master_external.html.
In this manner, copyright and navigation could be changed in a matter
of seconds between internal and external usage.

Note: When only a portion of your system has changed, it came sometimes be
more efficient to view this file first to learn what commands it issues. And
then instead of calling 50_nav_update.b from the command line, you
would issue the appropriate 55_nav_gen.b command (followed by the 56_
scripts). This technique is only appropriate for larger systems that were
previously generated and when changes are localized.

Note: When you add cref_ projects for API source code or book_ directories for
FrameMaker manuals, this is one of the files that you will manually have to
update accordingly.

My environment has a techpubs/perl directory that is parallel to the
techpubs/tp_tools directory. References from the shell scripts to a
Perl program use a relative path ../perl/<program>. For the
purposes of simplicity in creating the ZIP file and clarity in bringing
everything together, all scripts have been updated to reflect this new
path techpubs/tp_tools/src_perl/, which is simply src_perl/
from the scripts.

55_nav_gen.b

This script calls voyant_nav.pl to swap out navigation bars and
copyright information on all HTML files in the selected directory using
the specified master file. Refer to the documentation on voyant_nav.pl
for more details about what gets accomplished with this script.

When finished, it copies the generated tree.script and index files as
unique files to the zdoc_merge directory for later processing.

There is no requirement that voyant_nav.pl be called with the same
master file for each directory.

A valid argument can be made that the navigation and/or copyright
could be different from directory to directory. However, when the
same master file is used for all directories, changes can be made in one
place and propagated throughout the system.

55_nav_cp.b

60 TechPubTools User’s Guide

55_nav_cp.b

This is a direct copy of 55_nav_gen.b but with the voyant_nav.pl calls
commented out. This way the owning 50_nav_update.b can use the
appropriate 55_nav_gen.b or 55_nav_cp.b calls depending upon the
needs.

It copies the generated tree.script and index files as unique files to
the zdoc_merge directory for later processing.

Note: Some Voyant projects are unique in how they are generated and do not
require the additional voyant_nav.pl calls.

56_nav_index.b

This script performs several operations needed to prepare and finalize
the index for the HTML system.

• It removes any leftover index files or master index files from the
temporary directory (zdoc_merge).

• It removes any master index files from the final directory
(doc_publish).

• It copies default master index files to the temporary directory
(zdoc_merge). The default files state that the letter has no entries
and when appropriate are overwritten by voyant_indexer.pl.

• It copies from the directories of the system all index files that were
generated by voyant_nav.pl and gives them unique names in the
temporary directory (zdoc_merge).

• Runs voyant_indexer.pl to create new master index files in the
temporary directory.

• Copies all master index files from the temporary directory
(zdoc_merge) to the final directory (doc_publish).

A single template file is specified on the command line to
voyant_indexer.pl and is used to generate the master index files.
However, voyant_indexer.pl only generates index files for letters that
it encounters. This can leave holes in the index navigation. Hence, the
suite of index files is first populated with defaults for all letters using
the cp command and the template file.

Refer to the documentation for voyant_indexer.pl to find out all that
this script accomplishes in the index that is generated.

tp-tools-ug-02 61

 Chapter 6 Shell Scripts

56_nav_script.b

This script performs several operations needed to prepare and finalize
the master tree (table of contents) for the HTML system.

• It removes any leftover tree files or master tree files from the
temporary directory (zdoc_merge).

• It removes any master tree files from the final directory
(doc_publish).

• It copies from the directories of the system all tree files that were
generated by voyant_nav.pl and gives them unique names in the
temporary directory (zdoc_merge).

• Runs voyant_mt_app.pl to create new master tree files in the
temporary directory.

• Copies all master tree files from the temporary directory
(zdoc_merge) to the final directory (doc_publish).

Refer to the documentation for voyant_mt_app.pl to find out all that
this script accomplishes in the table of contents that is generated.

62 TechPubTools User’s Guide

Notes:

tp-tools-ug-02 63

Chapter 7 globe.pm

The globe.pm file is a Perl package that contains global variables are
routines that are used in several other Perl programs.

Overview

Initially, there was only one program (voyant_nav.pl).

• All variables were defined at the beginning of this program. This
facilitated changing the value of external facing tags, such as the
syntax of special HTML comment flags that the program needed to
recognize.

• Most variables were global to that program, because it reduced
memory usage and confusion in naming/meaning when passed
into routines.

During the development of the second program (voyant_indexer.pl),
many of the variables were for external facing tags were re-used. It
became a maintenance hassle to update these variables in multiple
places.

A design decision was made to place these global variables into a
single location, the globe.pm file. The reasoning was:

• Passing these variables by value makes copies of the information
in memory.

• Passing these variables by reference is essentially the same thing as
using them as a global variable but with potentially additional
complications, such as variables changing names.

• The call to the routine becomes more complicated when variables
are passed in particularly when considering the significant number
of HTML tags that the various routines need to recognize and
handle.

Variable and Data Structures

64 TechPubTools User’s Guide

• Many of the variables are used in other programs and define tags
that are specific to your environment. Placing the definitions in one
place makes them easier to change.

Now, many of the Perl programs reference this package file which
instantiates the variables. Then they can be accessed by any subroutine
in the program. Whenever these are used in another All such global
variables are prefixed with “globe::”.

In addition to the global variables, several routines that are used by
more than one program have been relocated to this globe.pm file.

Variable and Data Structures

Many of the global variables migrated into more complex data
structures consisting of a hashes of arrays. The reasoning was:

• Special code needed to be written to handle each unique variable.
The code was rather lengthy, hard to maintain, and hard to copy
copied into other programs which might require similar
functionality and variable definitions.

• Many of the external facing identifiers which delineated
information in, say, a generated HTML file had a start tag and an
end tag. This requires two variables for every identifier that I
wanted to catch. An array reduces the number of unique variable
names by a factor of two.

• Hashes of arrays can reduce the number of unique variable names
even further.

By putting more complexity into the data structures, the code became
simpler for what was required to fill the data structure, extract
elements, or otherwise manipulate the data. Moreover, the code could
be re-used and handle situations where tags might be (purposely)
missing.

The complex data structures impose standards and conventions. In
some cases, once the hash is defined in the globe.pm file, the code in
the perl (.pl) file does not need to know the explicit keys into the
hash, which further generalizes routines to manipulate the hashes.

tp-tools-ug-02 65

 Chapter 7 globe.pm

If you do not like some of my tag naming conventions for things that
appear in HTML files (but not necessarily to readers), the globe.pm
file is generally where they can be tweaked for your purposes.

WARNING! Even if the globe.pm file contained only variable definitions, it is a
piece of code where syntax does matter. Be careful in making
changes to definitions, otherwise other Perl programs won’t work.

The variables and data structures in the globe.pm file have comments
regarding which perl program uses them.

Note: If a given perl program doesn’t work, it could be that the hard-coded path to the
globe.pm file is invalid for your environment.

Common Routines

The problem of code re-use and re-purposing became an issue even
while developing the first couple of Perl programs, and only became
worse the more programs were copied and modified for other
applications.

On the one hand, I had to determine what was unique to one
application and what was truly general and valid as a shared routine
for several applications.

On the other hand, I had new data structures which simplifies code
further. Code needed to handle a data structure could be re-used to
handle other similarly structured data structures.

As a result, many of the routines were generalized to the point where
they could re-used. If two or more programs needed a routine, it was
placed into the globe.pm file. Not all of the routines are used in all Perl
programs.

WARNING! By adding common routines to the globe.pm file, it solidifies it as a
code file. Be careful in making changes to definitions, otherwise
other Perl programs won’t work.

66 TechPubTools User’s Guide

Notes:

tp-tools-ug-02 67

Chapter 8 voyant_nav.pl

The voyant_nav.pl perl program is the central tool in the
TechPubTools suite around which all of the other shell scripts and perl
programs rely.

Overview

The voyant_nav.pl perl program does most of the work in creating a
comprehensive HTML system that spans the mini-HTML systems
generated by Doxygen and Mif2Go (from FrameMaker source).

Specifically, this tool:

• reads a master file which specifies information for the head, top of
the topic, and bottom of each topic.

• swaps out information from a master for each topic and removes
certain HTML tags specified by the master (for better CSS control).

• creates several hash tables that ultimately determine topic order,
topic level in tree (table of contents, TOC), etc.

• generates a mini-Table of Contents file (tree.html and tree.script)
for the directory. This file is then re-used and combined with others
later to create the comprehensive system.

• processes index tokens coming from the output of Mif2Go.

• creates index tokens from the topic hash table.

• parses index tokens generated from Mif2Go or already existing in
the file.

• writes index entries to _index_file. This file is then re-used and
combined with others later to create the comprehensive system.

• figures out the previous-next topic browsing.

68 TechPubTools User’s Guide

The Beginnings

The voyant_nav.pl perl program started out as a tool just to swap out
the header, navigation, and copyright areas. These were items that
needed to remain consistent for all generated HTML files in a
subproject.

The goal was to have a tool that could post-process HTML files and,
say, update the copyright area at the bottom of each file with newer
information without having to go back to the (unchanged) source and
re-export.

Likewise, the header and navigation areas were items that could
frequently change based on trial-and-error of the look-and-feel and the
whims of my audience. Again, there was no sense re-running
extraction programs against the source if the general content remained
unchanged.

To keep the voyant_nav.pl program manageable, it focuses only on
the HTML files in one directory. A shell script (such as
50_nav_update.b and specifically 55_nav_gen.b) can conveniently call
this program with the specific input files for the project.

The voyant_nav.pl program reads in information from external
master files in order to avoid hard-coding data that frequently changes
or could potentially change, such as the tags to look for in the HTML
files.

The Extensions

The index and table of contents are two special areas which
theoretically could be created with their own tools. Such tools would
require opening and scanning each file in the input directory in order
to locate pieces of information of interest.

Because the voyant_nav.pl program already opens each file, reads it
into memory, and scans it for information of interest, it was enhanced
to tackle the mini-index and mini-table of contents just for the files in
its directory.

CYA

The voyant_nav.pl program was built up over time. Programming
was done iteratively and piecemeal. Debugging statements were
liberally created and then were initially deleted once the section of
code seemed to work.

tp-tools-ug-02 69

 Chapter 8 voyant_nav.pl

As the complexity of the program increased, many of the same
debugging code had to be re-entered to help trace the operation and
verify the results at various stages. Over time, I stopped deleting
debug sections and instead conditioned them out in order to keep
them available when needed later.

An early CYA effort was to always write a _temp file of the original
HTML file. This way the input could be compared to the output. Then
in one line (that could be turned on or off) the program overwrites the
original input HTML file with the contents of the _temp file.

 ultimately overwrites the HTML file that it reads it. However,

Data Structures

The voyant_nav.pl program initially had simple variables.

When other tools were needed, such as voyant_mt_app.pl to create the
master table of contents or voyant_indexer.pl to create the master
index, I discovered that many of the same variables and routines were
required.

I placed global variables and frequently used routines in the globe.pm
file, a Perl package.

More complex data structures were created later as the program grew,
because they simplify the program execution, make it more reliable,
and allow for code re-use.

Topic Browsing

Another of the extensions of the voyant_nav.pl program was to
create previous-next topic browsing that crossed over chapter
boundaries or to simply implement previous-next topic browsing.

• A limitation of our off-the-shelf extraction tool from FrameMaker
was that it could only offer browsing within a chapter.

• A limitation of our off-the-shelf source code extraction tool was
that it had no browsing.

In order to allow browsing over chapter boundaries from the
FrameMaker, I made restrictions on the naming convention of the
generated HTML files. The naming convention is:

• a two-digit number for the chapter [required], followed by

• a three-digit number for the topic in the chapter, followed by

• plain text regarding the topic title [required to be reader-friendly].

70 TechPubTools User’s Guide

In this manner, all files for a given chapter are grouped together by the
prefix; all topics are placed in order when sorted alpha-numerically;
and all files have meaningful names.

The grouping of files by chapters (first two-digits) is the most
important aspect of the naming convention, because when it allows
the brain-dead voyant_nav.pl program to know the order of the
chapters from the name.

Specifically, each HTML file extracted from a FrameMaker file knows
whether or not it is the first topic in the chapter, the last topic in the
chapter, or a topic in the middle of the chapter. Information about the
first and last topics is stored in a hash. Once all of the files in the
directory have been processed, all first and last topic files are re-visited
so that their previous and next links can be updated with information
that is known about the last topic of the previous chapter or the first
topic of the next chapter.

In the case of code files (which have no topic order tags), their names
determine the order. Once all of the files in a code directory have been
processed normally, they are revisited so that their previous and next
links can be updated with information.

Index Tokens

When pulling together multiple manuals or mini-HTML
documentation systems, the most effective and easily understood way
of implementing cross-references between manuals or systems is to
have an effective index.

Two extensions of the voyant_nav.pl program were to have it
generate index entries for the output file based on content (e.g., <H1>
tags) if none existed, and to have it handle index tokens that might be
inserted by other programs, such as Doxygen or Mif2Go.

Doxygen Index Tokens

In the case of the Doxygen extraction from source code, the generated
HTML files had many anchor tags of the format:

These anchors were used as mid-topic jumps sometimes from within
the same (often very long) HTML file and from other HTML files. The
doxytag extension was an easy tag to spot. Moreover, value of the
doxytag tag was useful information for the index.

tp-tools-ug-02 71

 Chapter 8 voyant_nav.pl

Hence the voyant_nav.pl program was enhanced to locate these tags
and extract relevant information for the entries into the index file.

Mif2Go Index Tokens

As was previously mentioned, my faith in going with Mif2Go as the
export tool was well-founded particularly when it came to OmniSys’s
responsiveness to my request for better index support.

My proposal to OmniSys used the Doxygen doxytag anchors as a
model. Once implemented and supported in my mif2htm.ini files, I
could create anchor tags of the format:

<a name=”<$$objectid>” class=”v_index” value=”index entry”>

The <$$objectid> actually comes from FrameMaker that Mif2Go
uses and uniquely identifies the paragraph format. The index entry
was text that was extracted from writer-defined index token in
FrameMaker.

The voyant_nav.pl perl program can easily locate anchor tags. When
they are determined to be of class=”v_index”, it then knows how to
handle the name attribute as part of a fully qualified URL to the HTML
filename and target within the file
(00000FileOwner.html#$$objectid), as well as the text to display to
the reader (“index entry”).

Hence the voyant_nav.pl program was enhanced to locate these new
v_index tags and extract relevant information for the entries into the
index file.

Note: For this to work properly, index tokens should have only one entry per token and
should have no more than two levels.

Input

voyant_nav.pl takes the following parameters:

path - location to find the HTML files. The name should be terminated
with a slash (\). Although the directory_name is the first command
line parameter, the true input are the HTML files contained within
that directory.

Output

72 TechPubTools User’s Guide

master_nav_file - [optional path and] filename for the HTML file to
use as the master for information. This file has several specially
flagged HTML comment sections that are required. Information
from the tagged sections are lifted and placed into the tagged
sections of the input HTML files.

Output

voyant_nav.pl returns or modifies the following:

input_html_file is modified with new information in the tagged
areas. This includes the information in the <head>, navigation at
the top of the <body>, and copyright information at the bottom of
the <body>.

_file_list is a temporary file with a list of all HTML files in the
given directory.

_index_list is a file with extracted index tokens.

tree.script is a file with a mini-TOC (table of contents) for the given
book.

tree.html is a temporary file with a mini-TOC (table of contents) for
the given book.

tp-tools-ug-02 73

 Chapter 8 voyant_nav.pl

Notes:

74 TechPubTools User’s Guide

tp-tools-ug-02 75

Chapter 9 voyant_mt_app.pl

The voyant_mt_app.pl perl program refers to the “main tree (mt)”
that plugs into the java table of contents (TOC) applet. This assumes
that tree.script files were created for all sub-projects by
voyant_nav.pl, which itself is usually called from the 56_nav_script.b
shell script.

Using all available and uniquely named tree.script files, this creates
a series of master m_tree*.script files which are nested inside a
master m_tree.script file.

Overview

This program reads in the project file. Based on the directory names, it
makes some assumptions about the names of the tree script files that it
expects to see. It steps through all tree script files, reads them in,
creates associated master tree script files, and then creates a master tree
script file that nests the other tree script files in order.

If an expected tree script file is missing, an error message is output but
a working master tree is still generated that ignores the missing
mini-TOC.

Note: When the original tree script files were created by voyant_nav.pl, they had no path
information in the hyperlinks. This was to make them more general and more easy
to use in other directory structures. The tree script files needed to stand on their
own and be independent of any resulting directory structure where they might be
shared.

Hence, this program must create master script files that include the
expected relative paths to the destination topics. The relative path
information is again the directory names from the project file.

Input

76 TechPubTools User’s Guide

The Beginnings

The voyant_mt_app.pl perl program started from another
home-grown program called voyant_mt_tree.pl. That program used
HTML files (tree.html) created for the mini-TOCs from
voyant_nav.pl and then generated a series of HTML file. It created
expanding/collapsing topics for only the top two levels (chapter and
heading1).

Although I liked the HTML files because they are fast to load and
simple, it was limited to only expanding the top two levels. As a
technical writer, I did not have the time to spend programming a more
general solution. Moreover, the multiple HTML which provided
“fake” expanding/collapsing topics would soon become
unmanageable.

The Extensions

After searching the Internet, an even better solution was found that is
more flexible, better, and cheaper than anything I could come up with.
It is a Java applet that implements the table of contents.

The Table of Contents Applet implements a tree view interface (similar
to the Win95/NT Explorer). The two features that impressed me the
most (aside from the inexpensive price for the source code) were the
simplicity of the input scripts and the ability to nest scripts.

Refer to www.better-homepage.com/java/java-applets-toc.html.

Once I had convinced management to let me spend the money, it was
easy to modify these tools to support the script files.

Input

The voyant_mt_app.pl perl program takes the following parameters:

path location to find the tree files. The name should be terminated
with a slash (\). Although the directory_name is the first command
line parameter, the true input are the tree files contained within
that directory. Tree files must begin with "tree_".

project_file [optional path and] filename that defines all
directories, their titles, and their sequence in the comprehensive
HTML system.

tp-tools-ug-02 77

 Chapter 9 voyant_mt_app.pl

Master tree files are another way of saying Table of Contents files. Tree
files themselves are mini-TOC files that were generated by
voyant_nav.pl.

Output

The voyant_mt_app.pl perl program creates m_tree_ script files for
each directory of the system. The files are named such that they are
associated with their owning directory. In addition, it creates a single
master m_tree_ script file that nests the other script files.

78 TechPubTools User’s Guide

Notes:

tp-tools-ug-02 79

Chapter 10 voyant_indexer.pl

The voyant_indexer.pl perl program uses the temporary files for the
index and generates a series of HTML files that are the master index
over the whole system.

It can also perform word-chunking that expands the number of index
entries and turns it into more of a concordance, a useful feature for
programs.

This assumes that _index_file files were created for all sub-projects
by voyant_nav.pl, which itself is usually called from the
56_nav_index.b shell script. Using all available and uniquely named
_index_file files, this creates a series of master m_idx*.script files.

Overview

This program issues a system call to create a list of candidate input
index_ files in the path directory. Then it steps through each of those
files and concatenates their input into master_raw.

master_raw is turned into a hash table master_index. The key into
the hash table is the index entry. What gets stored is both the title and
the URL.

Word-chunking, when turned on, is performed on each element in the
master_index. Natural boundaries (spaces, dashes, underscores,
changes in case in the middle of a word) are used to create additional
two-level index entries that contain the word-chunk followed by
where it came from.

The ignore_terms_file is used to eliminate useless word-chunked
entries (such as “the”, “a”, “to”, etc.) The additional useful entries are
appended to the contents of the hash master_raw using the
division_mult_entry separator only if the new entry is not a
duplicate.

80 TechPubTools User’s Guide

Word-chunking is particular useful for API documentation so that the
reader does not have to remember the exact name of a code item in
order to find it. An initial index token of “api_GetMovie-list” could
be found not just under its name in the “A's”, but under “get”,
“movie”, and “list”.

The expanded list is sorted.

The sorted list is output to a series of m_idx_ files. New m_idx_ files
are created whenever a new character starts a word in the list.

When an index entry is referenced by multiple URLs, the additional
references appear in the output as small document icons next to the
first reference in plain text.

The Beginnings

Originally, I had mini-HTML systems that came from FrameMaker
through Mif2Go and from source code through Doxygen. I was in
charge of the system, so could manipulate the source documents to
create links between mini-HTML systems.

The problems with this technique were:

• Such manual hyperlinks are inflexible to changes in the directory
structure.

• Limitations in certain tools required more hard-coded paths than I
wanted to have in my hyperlinks.

• Doxygen in particular does not like hyperlinks which are fully
qualified and tended to break them.

• The mini-HTML systems could not be used out-of-context in other
situations where they might be shared (e.g., another
documentation suite), because there were too many
interdependencies between systems.

• The inter-system dependencies were hard to maintain and keep
working, particularly when the overall structure of the system was
not yet set in stone.

The Extensions

How do printed manuals allow you to cross-reference between them?
What if the manual name changes? What if the cross-reference target
changes?

tp-tools-ug-02 81

 Chapter 10 voyant_indexer.pl

It seems to me that technical writers often purposely do not add
cross-references to other manuals. One reason is the problem of
maintaining the references. However, another reason is that you don’t
have to cross-reference everything.

I almost developed an extension tool that found created database
references of topics (such as titles, code item names, etc.) and the
HTML file where they were located. This tool would then go through
the entire system and automatically add hyperlinks.

I stop myself from wasting time developing this because:

• It is difficult to tell a tool when enough is enough. Every page
would be full of hyperlinks.

• This would be hard to read and follow.

• This would distract the reader and lead them astray when
really the writer intended for them to stay on that subject
before moving on.

• It is easy to get one-to-one hyperlinks, but more of a challenge to
get one-to-many hyperlinks, which is what the case would be if
you wanted to web all occurrences of some topic or keyword
together.

• It occurred to me that when something is of interest in a printed
manual, the technical writer makes an index entry.

• For multi-book documentation suites, the technical writer may
have a master index covering all manuals.

• Even if there is no master index, each manual has an index. As
a result, the technical writer can rely on the reader’s
intelligence to go looking in the indices of the various manuals
(if the technical writer didn’t already point them to the right
manual) to find more information.

As such, I curbed my desire to program more by fleshing out the
master index, which in my case is modular and always covers the suite
of documentation in the project.

Because the index files are created individually for the sub-projects,
those sub-projects can be shared in other documentation suites and not
mess up the master index.

True, it would be nice on occasion if I could put in links between
mini-HTML systems. However, if the mini-systems are indexed
properly, the reader can get where they need to be.

Input

82 TechPubTools User’s Guide

Building on the Java TOC Applet

Although the Java TOC Applet is used for the table of contents, it
could theoretically be used for the index, as well.

I explored this direction for a short time with the voyant_indexer.pl
perl program. It still outputs m_idx.script which can be plugged into
the Java TOC Applet (such as on a m_idx.html file) in the same
manner that the m_tree.script files are plugged into the m_toc.html
file.

I stopped pursuing this because:

1 Some of my projects create large indices on the order of 20,000
entries or more, depending upon whether or not word-chunking is
turned on. It may have necessitated breaking the index into nested
script files by letter, much like the table of contents, which
introduces further loading delays.

2 The script files cannot be searched from the browser. Therefore, it
can be more difficult to locate entries in a large index even after
expanding it.

3 The window for the applet (even if put into a separate browser
instance) place limitations on the display region and scrolling.

4 Most important of all, the present design of multiple HTML files
for the index works; the pages load fast, scroll easy, and can be
searched.

Input

The voyant_indexer.pl perl program takes the following
parameters:

path location to find the index files. The name should be terminated
with a slash (\). Although the directory_name is the first command
line parameter, the true input are the index files contained within
that directory. Index files must begin with "index_".

master_tree_file [optional path and] filename for the HTML file to
use as a template for all index files to be generated. Ideally, this
should contain navigation tools to get between the generated index
files [a-z] and other parts of the system, such as the table of
contents. This file has several specially flagged HTML comment
sections that are required.

ignore_terms_file [optional path and] filename for a text file that
contains words to ignore in the word-chunking process.

tp-tools-ug-02 83

 Chapter 10 voyant_indexer.pl

The true input are the “index_” files. These files are an unsorted
running list of index tokens that were extracted from the HTML files in
a directory. The tokens have two parts: the index entry and its URL.
The separator is defined in the globe.pm file and is :,:
($globe::word_url_boundary). Additionally, the index entry can
have two levels. In such cases, the separator is :;:
($globe::word_c_boundary). Finally, a given index entry can
represent multiple references or URLs. In such cases, the multiple
entries are separated by :;;;: ($globe::division_mult_entry)

If the separators are changed in the generator program
(voyant_nav.pl), they need to be changed here, too. The variable names
in both programs are the same. The separators themselves were chosen
because they were deemed never to occur in an index entry or URL
and aren't Perl special characters.

More information about the master_file. Aside from serving as a
template for all generated index files, this file chunks information
using specially tagged HTML comments in order to simplify locating
where generated information is to be placed. In addition, some tags
contain information critical to the proper operation of the indexer.

This does not support index entries that might be or have Perl special
characters. These are often eliminated early in the process.

The input index_ files cannot have “.htm” as part of the name. This
assumes that input information was of the proper format with an
index entry, $globe::word_url_boundary, and URL. If any of the
input index_ files did not have this, this can cause problems.

Output

The voyant_indexer.pl perl program creates a series of HTML files
that begin with “m_idx_”. Generally, what follows in the name is the
first character of the first word within the file. All index entries
beginning with that character are in that file. These files are created in
path.

In addition, voyant_indexer.pl perl program outputs m_idx.script
which can be plugged into the Java TOC Applet.

84 TechPubTools User’s Guide

Notes:

tp-tools-ug-02 85

Chapter 11 voyant_latex.pl

voyant_latex.pl changes two Latex files in each zlx_ directory of
the system so that they contain the appropriate information for the
project before the PDF files are generated. Most of the content for the
PDF files comes from Doxygen and is in a Latex format.

Input

path default location to find the Latex temporary directories. The
name should be terminated with a slash (\).

This should be the top directory where various
master-doxygen.sty and master-header.tex can be found and
more importantly, the zlx_ directories where generated LaTex files
from Doxygen reside.

master_project_file [optional path and] filename for the file that
stores the information needed for the project and the latex files.
Ideally, this should be the same project file used by the
voyant_nav.pl tool, because this contains the voy_order for the
project.

latex_variables [optional path and] filename for the file that
contains additional comment tags with the voy_latex variables
and the voy_latex_head variables.

Global variables are defined in the globe.pm file, a Perl package.
Whenever these global variables are referenced here, they are prefixed
with “globe::”.

Each Doxygen directory in the project file can have their own
directories with LaTex files. The master Latex files in each of those
directories can be updated with appropriate information so that the
headers and footers in the PDF file contain relevant information.

86 TechPubTools User’s Guide

To do so, several Latex variables are defined in the <!-- begin
voy_latex -- !-- end voy_latex --> comment of the
latex_variables file. They are:

"##master_header_tex##", "master-header.tex"
"##master_doxygen_sty##", "master-doxygen.sty"
"##output_header_tex##", "voy-header.tex"
"##output_doxygen_sty##", "doxygen.sty"
"zz-yyyy-by-companyname-zz", "by Voyant Technologies, Inc."
"zz-genbydoxversion-zz", "Generated by Doxygen 1.2.11.1"
"zz-outside-lfooter-zz", "Voyant Technologies, Inc."
"zz-inside-rfooter-zz", "zz-docnum-zz"
"zz-inside-lfooter-zz", "zz-docnum-zz"
"zz-outside-rfooter-zz", "zz-doctitle-zz"

Another Latex variable can be defined in the <!-- begin
voy_latex_head -- !-- end voy_latex_head --> comment of the
latex_variables file. It is:

"refman.tex", "\begin{titlepage}", "\end{titlepage}"

Output

voyant_latex.pl generates appropriate header.tex and
doxygen.sty files for each zlx_ directory in the system. These are
then used in Latex's PDF generation for each subproject. It first reads
the reads in the voyant_master_nav.html file (or equivalent). This
file must specify:

• The voy_order for the system that lists all directories, associated
names, and associated PDF files.

• The voy_latex which contains variables used in LaTex build such
as master file names, company name, etc.

• The voy_latex_head which contains additional information for
the refman.tex file.

voyant_latex.pl steps through all cref_ directory names in the
voy_order and generates an equivalent zlx_ directory name. These
directories should be found under $globe::path.

The voy_latex variables declare where additional master.tex and
master.sty files reside. These contain call-outs for variables that
voy_latex resolves for the given project. All variables in the master
files are resolved with information appropriate for the project.

Upon conclusion, appropriate refman.tex and doxygen.sty files are
written to each zlx_ directory.

tp-tools-ug-02 87

Chapter 12 find_extract.pl

The find_extract.pl perl program is a handy tool for API
applications that would tend to contain too much noise. It generates a
temporary file from many source code files. The temporary file
contains only those code items of interest.

Overview

In more general terms, the problem was that the engineers’ working
directories often contained more code files and code in general than
what was required by down-stream API users. When I ran Doxygen
on these files and directories, it would pick up many more code items
than were useful and significantly added noise to the output.

• For one API project, I had C++ classes which implemented
“functions” to an internal Pascal-like programming language.

• For another project, all sub-projects created and exposed to all
users a small set of functions. These functions were distributed
throughout the code and were surrounded by the C++ code that
made them possible. (These were called xhelp functions, which is
why the x creeps through in implementation and descriptions.)

From the onset, this tool needed to support different requirements in
terms of what was passed through to the temporary file.

Hence, each project can define its own xscope, which is a perl module
that limits it definitions to the contents of several data types that are
used later.

88 TechPubTools User’s Guide

Input

input_scope A file path and name to a perl package that has the
to-be-included and to-be-excluded code items commands.

root_path_to_files must be terminated with a forward (\/) slash.
If output file does not have a forward slash (\/) -- an indication of
a path --, then the <root path to files> is assumed.

output_file the name of an another file. This file, plus one similarly
named with a leading underscore are generated. The file without
the underscore is intended as the input to Doxygen.

The input_scope file is the key to the successful operation. It is
required to have:

• The xscope perl package definition.

• Routines

» declare_variable.

» memory_clean_up.

• Arrays:

» x_names, which contains all prefixes that could be of interest.

» needed_in, which contains a list of xhelp commands that are
absolutely needed-to-be-in.

» needed_out, which contains a list of commands that we don't
want to expose at all if they happen to come through.

» include_f_type, which are file types that should be viewed.

Output

In short, the find_extract.pl perl outputs these files:

<output_file>.gen which has part of its name specified as an input
parameter. It contains the located code item and all associated
doxygen comments. This has only a prototype definition; the
actual code body for the code item is empty.

Example: When global (xhelp) functions were dispersed around
the code pool, this file would put the function prototype and its
associated comments in this file.

tp-tools-ug-02 89

 Chapter 12 find_extract.pl

<output_file>_class.gen which has part of its name specified as an
input parameter. It contains the definitions of any classes, their
member functions of interest, and their associated comments. This
has only a prototype definition; the actual code body for the code
item is empty.

Example: Sometimes developers have classes with many member
functions, but only several of which that they want to expose in the
documentation. This file would contain only those classes and
member functions deemed worthy of exposing. It saves the
developer from having to play tricks with private and public
declarations. Moreover, in my case, the exact member function
name was not actually exposed, but something similar.

<output_file>_dox_template.gen which has part of its name
specified as an input parameter. It contains just the associated
doxygen comments.

Example: For one project, developers implemented a Pascal-like
language using C++ classes. The Pascal code that was exposed to
users was generated. The appropriate place for the documentation
of the end-user functions was on a class member function
definition. These comments needed to be found and extracted. I
used the same code generation tools as the developers to generate
a different temporary file with the function definitions that
matched what came out of the extracted doxygen comments. Both
files were then used as input into doxygen.

<output_file>_list.gen which has part of its name specified as an
input parameter. It contains a list of located code items and a
checklist whether or not they had doxygen comments.

Example: This file was used mostly as communication between
Technical Publications and Engineering. It showed which code
items I found and whether or not they were commented as
expected. Engineering was expected to review the list, remove
code items that weren’t supposed to be picked up, add code items
that were, and comment those items that were flagged as not
having templates.

Depending upon the application, any of the files except the
<output_file>_list.gen file could be used as subsequent input into
doxygen.

Note: The output files used as input to Doxygen have only prototype definition; the actual
code body for the code item is empty. Doxygen doesn’t care about the
implementation details below the definition of the code item, and neither does the
API reference documentation.

90 TechPubTools User’s Guide

Implementation Details

The find_extract.pl perl program does divide and conquer.

1 The find_extract.pl perl program greps the code

• Using the prefix list and looking at the file types of interest.

• Using the command list and looking at the file types of interest.

• This information is placed into a very temporary file.

2 The temporary file with grep results is stripped of non-interesting
entries.

3 A file hash is created that is a hash of hashes.

$file_hash {$src_file} {$code_item} {r} {$return_type} = unimportant number

$file_hash {$src_file} {$code_item} {p} {$prototype} = doxygen

It contains:

{$src_file} the source code files where items of interest were
found.

{$code_item} code items of interest, each associated with a source
file.

{r} {$return_type} a hash of return types for each code item;
supports overloading.

{p} {$prototype} a hash of code definitions for each code item;
supports overloading. It contains to the doxygen comment
block.

4 The source files from the hash are

• opened and searched for their respective code item definitions.

• are searched for comment blocks associated with the code item
definitions.

5 The file hash is

• fleshed out for the prototype definitions and their respective
comment blocks.

• is stepped through and output to generated files. The
generated files are intended for input to doxygen.

The final step is the temporary output files are generated easily based
on the information in the hash tables. The output files have only
prototype definition; the actual code body for the code item is empty.
These files are used as input to Doxygen. Doxygen doesn’t care about
the implementation details below the definition of the code item, and
neither does the API reference documentation.

tp-tools-ug-02 91

Chapter 13 tree_js_2_script.pl

The tree_js_2_script.pl perl program is used in conjunction with
Doxygen to create a tree.script file from a Javascript file.

Overview

Doxygen has a configuration option called GENERATE_TREEVIEW. When
this is enabled, it creates two files:

• treeview.js is a general Javascript application that is referenced
in the Doxygen output. It contains the routines required to have
folders and topics that provide an expandable/collapsable table of
contents in a left-hand navigation frame.

• tree.js is a Javascript file with data specific to the project. The
treeview.js acquires its expandable/collapsable content from the
tree.js file.

Under normal circumstances, the treeview.js and its associated
tree.js data could have been re-used and re-purposed in the other
settings, instead of searching for another solution, such as the Java
TOC Applet.

I did have some experimental tools that could combine the tree.js
files from several sub-projects into a comprehensive one. The problems
were that the Netscape Navigator didn’t like the treeview.js at all
and that Microsoft Internet Explorer would issue memory warnings as
the tree.js content increased.

Still, the overall structure of the tree.js file from Doxygen was
commendable. When the Java TOC Applet was discovered and its
script files researched, a design decision was made to simply convert
from the Javascript format needed for treeview.js into a script
format needed by the Java TOC Applet.

92 TechPubTools User’s Guide

The tree_js_2_script.pl is usually called from within the
35_gen_dox.b shell script, right after it performs the Doxygen build.

CAUTION! The tree_js_2_script.pl perl program is heavily dependent on
Doxygen and the assumptions and formats in the output tree.js file.

Input

The tree_js_2_script.pl perl program takes the following input
arguments.

path_to_tree the directory wherein the tree.js files can be located.

name_of_input a relative path and name for the input javascript file.
This is usually the tree.js file.

name_of_output [optional] a relative path and name for the output
script file suitable for the Java TOC Applet. If this is not provided,
the name_of_input is used but has its extension changed to
.script.

The tree_js_2_script.pl perl program requires access to globe.pm
for variable definitions.

The tree_js_2_script.pl perl program is not very complicated,
which is why it is not commented or documented very well (at this
point in time. It is heavily dependent on Doxygen and the
assumptions and formats in the output tree.js file.

Output

The tree_js_2_script.pl perl outputs a script file suitable for the
Java TOC Applet.

tp-tools-ug-02 93

Chapter 14 html_look_integrate.pl

The html_look_integrate.pl perl program and its
html_look_integrate.pm (name is optional) companion are intended
as an internal web spider tool. You give it the starting point (an HTML
file) and it traces the hyperlinks. While tracing, it creates a hierarchical
table of contents. The operation is complete when there are no more
unvisited HTML files referenced from hyperlinks in any of the files.

Overview

This tool came out of the need to provide a table of contents structure
to some inherited HTML documentation from an outside vendor
which didn’t have such. Moreover, the HTML documentation could be
updated whenever the vendor released new software or whenever we
ran their tools to generate HTML documentation for our
enhancements to their software.

The html_look_integrate.pl perl program is not perfect, but could
be useful. This is how it works.

1 You provide it with one or more top-level starting files.

2 It opens the starting file and looks for any hyperlinks to other files.

3 A list of children files is created for the owning document based on
the destination files of the hyperlinks.

» If the destination file is a starting file, it is added to the list but
its contents are not traced.

» Likewise, if the destination file has already been processed
through some other path, it is added to the list but its contents
are not traced again.

4 For each child file requiring tracing is opened and the step 3 is
repeated with the child now being an owning document.

94 TechPubTools User’s Guide

The imperfections of the html_look_integrate.pl perl program that
immediately come to light:

• If a document is already a type of table of contents with some
hierarchical structure, this tracing flattens that structure out giving
equal weight to all found hyperlinks.

• If a document makes an off-hand reference hyperlink to a related
topic document, this tool may explore that hierarchy early in the
process and place its structure out of contents under the “owning”
document.

• In terms of tracing, this gives equal weighting to child hyperlink
references that are hierarchical and those that mentioned more in
passing, such as copyright hyperlinks or cross-reference
hyperlinks.

• To avoid loops, this remembers all visited documents and only
places them into the hierarchy once.

• This expects all hyperlinks and cross-referencing to be localized.
Hyperlinks out into the greater WWW could result in much
churning as it builds a tracing structure for the Web instead of for
the local HTML documents.

Input

input_scope A file path and name to a perl package used to limit the
scope of the search and to help structure the output. The
html_look_integrate.pm can be used as an example.

html_tmpl template for generated files. This is typically
voyant_master_nav.html. Various fields are extracted (inside
<head>, top of <body>, bottom of <body>) and inserted into the
HTML files.

The input_scope file is the key to the successful operation. This file
will require tweaking as you experiment with the output.

CAUTION! This is a code file, so be careful about syntax.

The input_scope file is required to have:

• @top_files, an array of files that determines the starting points
for all subsequent traces. If the destination of a hyperlink
references one of these array items, further tracing is stopped. The
order of the items in this file is important, because it determines
the order of items in the traced heirarchy.

tp-tools-ug-02 95

 Chapter 14 html_look_integrate.pl

• @ex_as_child, an array of files that are to be excluded as children
and further tracing when found as the destination of a hyperlink
reference. The intent of this are to exclude HTML files that might
be referenced that are themselves table of content or heirarchy
summary files.

You may run the html_look_integrate.pl perl many times to tweak
the input_scope file in order to get the desired output.

Output

The html_look_integrate.pl perl generates a tree.script file that
can be used by the Java TOC Applet.

In addition, this uses the html_tmpl template for generated files. This
is typically voyant_master_nav.html. Various fields are extracted
(inside <head>, top of <body>, bottom of <body>) from the master
(html_tmpl) and their contents inserted into the HTML files. The
purpose of this is to give a consistent look and feel to the HTML
system.

In other words, the HTML files are all overwritten. The general content
doesn’t change. What changes is

• any navigation for browsing at top of <body>.

• any generation date and copyright information at the bottom of
<body>.

• any CSS, formats, or applet definitions within the <head>.

96 TechPubTools User’s Guide

tp-tools-ug-02 97

Chapter 15 ini_html_gen.pl

The ini_html_gen.pl perl program is a special purpose tool for
generating documentation for INI files. Although this is a Voyant
specific tool for generating HTML documentation for our INI
configuration files, those INI files are based on standards defined by
others, such as Microsoft and SUN.

Overview

The ini_html_gen.pl perl program was created after the
log_html_gen.pl tool. Many of the log_html_gen.pl program routines
were extracted and placed in globe.pm so that they could be used by
both programs.

As with the LOG messages for the log_html_gen.pl tool, the
requirements for Technical Publications relating to the INI files were:

• Document the individual INI sections and items.

• Don’t add any code bloat to the source INI files.

The INI file syntax is well defined. In general, a section begins with
[some_name] and ends with an empty []. Inside each section are
items, possibly comments, and possibly nested sections. Items have
the general syntax:

item = value // comment.

To aid in readability, items within a section are indented. Nested
sections require further levels of indentation.

Because this ini_html_gen.pl perl program is based on the
log_html_gen.pl perl program, it supports:

• XML tags defined as a comment after an INI item.

98 TechPubTools User’s Guide

• XML tags can reference destination XML tags within the same file
or from external files.

A valid argument could be made that self-documented configuration
files are useful to the customer. Likewise, a valid argument could be
made that self-documented configuration files provide the customer
with too much information with which to shoot themselves in the foot.
The two camps are still arguing.

The developers have the upper-hand and have tools which
auto-generate configuration files without comments.

Hence, because the documentation for an INI file item will most likely
reside external from the INI file itself and in order to simplify the XML
syntax, the ini_html_gen.pl perl program takes additional input
files that can contain the documentation.

So, descriptions to INI file items can be:

• in-line with the INI item definition itself in the comment section.

• within the INI file somewhere, marked with an XML destination
tag.

• in an external file somewhere marked with an XML destination
tag.

This approach was chosen, because it puts the documentation much
closer to the source (the engineers). Even if a default fully-commented
INI file doesn’t exist that the engineers maintain, an HTML file
checked in near their source code could be maintained. Even failing
that, the ini_html_gen.pl perl program does checks for all exposed
INI items to see if documentation exists.

The auto-generation of documentation extract the current syntax of the
INI file, create a template HTML document for each INI file item, and
then trace the XML tags to locate the plain text descriptions. During
the output phase, appropriate entries for the index and table of
contents files are generated.

Input

root_dir path to place the output files. This is generally something
like doc_publish/cref_sysxini/ .

src_ini_file is the input source file that has the INI items. This file
has a pre-defined format and structure.

tp-tools-ug-02 99

 Chapter 15 ini_html_gen.pl

html_tmpl template for generated files. This is typically
voyant_master_nav.html. The true template is internal to the tool,
but this master has information for the <head>, top of <body>, and
bottom of <body> which gives a standardize look-and-feel for the
whole sub-project that can match the whole project.

org_title [optional] title for the example file. This is plain text that
gets exposed in several places in the output.

ext_doc [optional] additional documentation file with XML tag
destinations and HTML formatted information. This is useful
when the src_ini_file does not have any XML tags or
documentation, or when programs are based on the same source
and have overlaps in the INI configuration.

The ext_doc can have documentation for more INI items than are
present in the src_ini_file.

An example of where this would be useful is when working
configuration files expose only those INI items needed for their
specific modes of operation or their specific applications. In which
case, the input src_ini_file could be an application-specific INI file
without comments, while ext_doc could be a fully-commented and
documented master default INI file.

Another example is when you desire documentation for
customer-specific INI files that expose their default values.

Output

The goal of the ini_html_gen.pl perl program is a series of HTML
files that fully document all configuration items exposed in the input
INI file.

On the way to that goal, the ini_html_gen.pl perl program generates
several intermediate files which can be used depending upon the
input state of the source INI file.

100 TechPubTools User’s Guide

INI file with XML tags: Sometimes the INI file to be documented
has no XML tags in the comment area of the configuration item.
Hence, you can run this tool to generate an output file with those
tags. The output file then becomes an input in a subsequent run of
the tool.

Note: Yes, this is convoluted, but it is intended only as a stop-gap measure
until engineering is fully on board about how to document INI files. It is
hoped that either their fully-documented master default INI file or
their tool generated INI files will contain the appropriate XML tags. If
they decide not to do that, then this tool can make assumptions about
XML tag names, which it does for this temporary output file.

Text file with documentation and XML destination tags: If
there is a fully-documented master default INI file, this temporary
file holds just the XML destination tags and the associated HTML
documentation. Later, this file can be used as an additional input
file when creating documentation for an application-specific or
customer-specific INI file.

Note: It can sometimes be trouble-some to use a valid fully-documented and
XML tagged INI file as an additional source for the documentation,
because the target XML tags cause unending loops in the tracing
process. By extracting the documentation into a separate file, it
contains only the destination XML tags. This tool can then be run once
to get the documentation from the master and then a second time to
create the HTML suite for the specific INI file.

INI file tagged and documented: If the source INI file had its
documentation initially stored in another file, this creates a
self-documented and XML tagged INI file.

Note: This file was used mostly as a test of the tools and proof of concept.
This file should be a working INI file that might be cleaner and neater
than the original INI file. If Technical Publications was given free reign
to help create a self-documenting default master INI file, this
particular version could be the one that is handed back after the initial
effort and is subsequently maintained.

The various text files that are output were intended to give me a quick
leg up in documenting new INI files when the files had no target XML
tags, much less destination XML tags with HTML descriptions for the
INI items. Hence, during the initial documentation phase, the
ini_html_gen.pl program is sometimes run several times and
various aspects of its output are fed back into the tool for yet other
runs.

Eventually, though, a documentation file with destination XML tags
and its HTML descriptions should be made available for use with
subsequent versions of the INI file. As of this point in time until

tp-tools-ug-02 101

 Chapter 15 ini_html_gen.pl

agreement is reached, it might remain a two-pass process or the tool
might be modified into a one-pass process depending on our company
decisions.

In any event, the final product is a series of HTML files. Each HTML
file has a standard template format which is defined inside of the
ini_html_gen.pl perl program. It leaves the order of the items as
they were found in the original INI file. It adds an appropriate
overview topic and adds appropriate information for browsing. In
addition, an appropriate tree.script file is created that can be used
by the Java TOC Applet.

The ini_html_gen.pl perl program has the ability to create an
appropriate index file. However, the voyant_nav.pl does a better job.
Moreover, the voyant_nav.pl may have to be called at a later point in
time with an updated voyant_master_nav.html in order to standardize
the look-and-feel.

CAUTION! The voyant_nav.pl program does not generate a tree.script file that is
the same as intended by the log_html_gen.pl program. Therefore, any
shell scripts for creating INI documentation should first backup the
tree.script, run voyant_nav.pl, and then overwrite the generated
tree.script with the backed up tree.script. Likewise, subsequent shell
scripts, such as 50_nav_update.b, should use 55_nav_cp.b on this
project.

102 TechPubTools User’s Guide

Notes:

tp-tools-ug-02 103

Chapter 16 log_html_gen.pl

The log_html_gen.pl perl program is a Voyant specific tool for
generating HTML documentation for our LOG messages.

Unmodified, the log_html_gen.pl tools may be of little use to you in
your environment, because it relies on the pre-defined format of a
company-internal source file.

Overview

Voyant has localized the definition of LOG messages from our product
into a small handful of source text files. These files have unique syntax
and formatting, which is why an unmodified version of the
log_html_gen.pl tool may be of little use to you in your
environment.

The requirements for Technical Publications were:

• Document the individual LOG messages.

• Don’t add any code bloat to the source files.

The source files have either comment lines or LOG message lines. Each
LOG message is on a line of its own with fields delimited by a special
character. The engineers left the last field on the line as a free-form
field for Technical Publications.

Taking the command regarding code bloat at face value and knowing
that sometimes the documentation could not be expected to fit
(readably) on one line, we decided to insert XML tags into the source
file and the comment fields. The XML tags then could point to XML
tags located in external files to find the rest of the documentation.

It turns out, when the engineers said they didn’t want any code bloat
as a result of documentation efforts, they really meant that they didn’t
want natural groups of LOG messages interrupted with lengthy

104 TechPubTools User’s Guide

documentation blocks. They didn’t care about the size of the file. They
permitted lengthy documentation blocks at the beginning of the file, at
the end of the file, or in between groupings of LOG messages.

Hence, the XML tags in a LOG message comment could point to
comment lines which contain destination XML tags and the (lengthy)
description of the LOG message.

So, descriptions to LOG messages can be:

• in-line with the LOG message definition itself in the comment
section.

• within the LOG message file somewhere, marked with an XML
destination tag.

• in an external file somewhere marked with an XML destination
tag.

This approach was chosen, because it puts the documentation much
closer to the source (the engineers). More importantly, the engineers
can change the syntax of the LOG messages at any point in time, which
the documentation needs to keep up with. Generating the
documentation is the only way to keep up with rapidly changing code
(LOG messages).

The auto-generation of documentation extract the current syntax of the
LOG message, create a template HTML document for the LOG
message, and then trace the XML tags to locate the plain text
descriptions. During the output phase, the LOG messages are sorted
and appropriate entries for the index and table of contents files are
generated.

Many of the key routines of log_html_gen.pl were generalized
further and then extracted into globe.pm, because much of what the
ini_html_gen.pl perl program required in terms of handling XML tags
was identical.

Input

root_dir path to place the output files. This is generally something
like doc_publish/cref_sysxini/ .

message_file is the input source file that has the LOG messages. This
file has a pre-defined format with either comment lines or LOG
message lines. The format of the LOG message lines is also
pre-defined.

tp-tools-ug-02 105

 Chapter 16 log_html_gen.pl

html_tmpl template for generated files. This is typically
voyant_master_nav.html. The true template is internal to the tool,
but this master has information for the <head>, top of <body>, and
bottom of <body> which gives a standardize look-and-feel for the
whole sub-project that can match the whole project.

CAUTION! Unmodified, the log_html_gen.pl tools may be of little use to you in
your environment, because it relies on the pre-defined format of a
company-internal source file (message_file).

Output

The log_html_gen.pl perl program generates a series of HTML files
based on the individual entries of the LOG message file.

Each HTML file has a standard template format which is defined
inside of the log_html_gen.pl perl program. It sorts the output
alphabetically by LOG message name and adds appropriate
information for browsing. In addition, an appropriate tree.script
file is created that can be used by the Java TOC Applet.

The log_html_gen.pl perl program has the ability to create an
appropriate index file. However, the voyant_nav.pl does a better job.
Moreover, the voyant_nav.pl may have to be called at a later point in
time with an updated voyant_master_nav.html in order to standardize
the look-and-feel.

CAUTION! The voyant_nav.pl program does not generate a tree.script file that is
the same as intended by the log_html_gen.pl program. Therefore, any
shell scripts for creating LOG messages should first backup the
tree.script, run voyant_nav.pl, and then overwrite the generated
tree.script with the backed up tree.script. Likewise, subsequent shell
scripts, such as 50_nav_update.b, should use 55_nav_cp.b on this
project.

106 TechPubTools User’s Guide

Notes:

tp-tools-ug-02 107

Chapter 17 Input Filters to Doxygen

Doxygen works on C/C++ source files. Occasionally, the file needs to
be modified prior to Doxygen viewing it in order to improve its
reliability. The Doxygen project files support the specification of input
filters.

Input filters are used as part of this project.

• Input filters change comment styles from //! into /**...**/. The
latter are C-style comment blocks that work better with Doxygen,
because they group comments together. Individual //! do not get
picked out of, say, the file header and placed on the first code
element.

• Input filters change class definitions into a format that is more
standard for Doxygen reporting.

• Input filters change the @bug Doxygen command into @lim
command that is defined in the project file. The @bug command
outputs “Bugs and Limitations”; we prefer seeing “Limitations and
Caveats”.

• Input filters can change IVE program files (Pascal-like
programming language) and Perl program files into a format that
is more or less recognized by Doxygen.

dox_bug_filter.pl

Input filter for Doxygen for most C/C++ code files. This changes code
comments and other items on-the-fly so that it can be more effectively
processed by Doxygen.

In particular, the Voyant coding standard calls for //! comments.
However, these comments are not interpreted as blocks even when
placed together. Sometimes comments from a file header were being
placed on code items.

dox_ive_filter.pl

108 TechPubTools User’s Guide

By changing the comment style to be C-style, a true comment block
could be created with no misinterpretation.

Other changes that this file does include:

• formatting some auto-generated classes to be correct for extraction.

• replacing @_bug with @_lim so that the word “bug” never appears
in our output.

dox_ive_filter.pl

Input filter for Doxygen for most IVE code files. This “fakes-out”
Doxygen into thinking that IVE (Pascal-like) code files are really C
files.

dox_chg_not.pl

Tool for Doxygen for most C/C++ code files. This changes Doxygen
commands to a style that is more readable. Forward and backward
slashes make my eyes dizzy and aren't in the JavaDoc convention.

This file isn't used any more. Back when we started using Doxygen, we
did not have a good handle on how to structure comments, how to
format commands, etc. This tool fixes a mistaken direction taken in the
early efforts.

dox_comment_chg.pl

Used when Doxygenating C/C++ code files. This is a tool to change
the Doxygen comment style from C-style comments /** ... **/ to
comments with //!.

The reason is that influential members of the Voyant coding
convention group decided that they liked C++ style comments better
and did not want to have mixed comment styles in their source files.
Hence, our coding conventions specify this style.

This tool changes any existing C-style comments to this //!
comments. This is used when the technical writer is editing those
source files. This change gets checked in.

tp-tools-ug-02 109

 Chapter 17 Input Filters to Doxygen

However, input filters need to be used to change those //! comments
back into the C-style on-the-fly, because the C-style works better in
Doxygen.

pl_comment_change.pl

Changes special comments (##!) inside Perl programs so that they look
more C++ like for Doxygen to handle.

It also tries to special case some of the Perl constructs so that they
aren’t misinterpreted and inappropriately exposed as incorrect C++
constructs.

csh_comment_change.pl

Changes special comments (##!) inside shell scripts so that they look
more C++ like for Doxygen to handle.

110 TechPubTools User’s Guide

Notes:

tp-tools-ug-02 111

Chapter 18 voyant_master_nav.html

The voyant_master_nav.html file is a template file that is used by the
voyant_nav.pl program. Its intend is to facilitate standardized
look-and-feel, navigation, and copyright information across all HTML
files that are in a documentation system.

Overview

The TechPubTools employ standard HTML comments that reside in
the HTML file but are not displayed by the browser. The comments are
typically used as pairs (begin and end) and contain a tag name that
TechPubTools recognize.

The voyant_master_nav.html defines master information for all
HTML files in sub-project’s directory or even for the entire HTML
system. The information residing between the paired comment tags in
the master file gets propagated into all HTML files in between their
respective comment tags.

The voyant_master_nav.html can be used as a template to define
your own master file. The name of the file is not important. The
55_nav_gen.b shell script makes calls to the voyant_nav.pl program
and passes in whatever master file you specify.

Presently, the voyant_master_nav.html defines:

• the cascading style sheet information in addition to hyperlink
colors.

• the common navigation that all HTML files should have. This is
implemented as “fake-button” through nested HTML tables. This
was chosen because at the time, appropriate GIF images for the
buttons were not available. It was also believed that the tables
would load fast.

Minimum Master Definition

112 TechPubTools User’s Guide

• the navigation that Doxygen generated files should have. This uses
nested HTML tables for “fake-buttons”.

• the navigation that Mif2Go generated files should have. These are
files that come from FrameMaker and are meant to be browsed.
This uses nested HTML tables for “fake-buttons”.

• the copyright information that is displayed at the bottom of each
topic.

• additional parameters for the Java TOC Applet which allow the
topic to be tracked in the table of contents when using the browse
buttons (and assuming the book for the topic has already been
expanded to at least its first level.)

Minimum Master Definition

Your master files are required to have a certain comment tags defined.
Your master file does not have to a functional HTML file, but may be
easier to work with and modify if it is completely specified. The
comment tags can appear in any order.

<!-- begin voy_header --><!-- end voy_header --> used for
definitions such as the cascading style sheet and hyperlink options.

<!-- begin voy_common_top --><!-- end voy_common_top -->
used for system-wide common navigation.

<!-- begin voy_fm_book --><!-- end voy_fm_book --> used for
navigation that is specific to a FrameMaker book. In particular, this
means buttons or hyperlinks for previous and next topics.

<!-- begin voy_dox --><!-- end voy_dox --> used for
navigation that is specific to the Doxygen output. This is not
specified in the mif2htm.ini files, but does appear in files used by
Doxygen. Also, the post-processing tools need to know about this.

<!-- begin voy_footer --><!-- end voy_footer --> used for
system-wide common footer material. In particular, this can
contain the copyright information, date of generation, and
document numbers.

<!-- begin voy_html_zap --><!-- end voy_html_zap --> used
for defining HTML syntax that is troublesome in the individual
files. Typically, this is hard-coded font information that defies
control by the cascading style sheet. Hence, each line of
information between the voy_html_zap tags in the master file
contains:

• The opening HTML syntax that you want to remove. This is
something like “<font face“. This can have incomplete
HTML syntax.

tp-tools-ug-02 113

 Chapter 18 voyant_master_nav.html

• This is the closing syntax to the HTML code that you want to
remove. This is usually “>”. Everything between that opening
syntax and very next occurrence of the closing syntax is
removed.

• In addition, sometimes the HTML tag being removed is part of
paired tags. This could be something like ““. If
present, the very next occurrence of this HTML tag after the
closing syntax is removed.

<!-- begin voyant_variables --> is a single comment created by
Mif2Go. It is used to store information about the FrameMaker
topic. This HTML comment contains a ## separated list of paired
items (a flag, ## separator, and content) needed for navigation.

Note: The tag names in the comment can be changed. However, the change needs to be
propagated into global.pm, mif2htm.ini, the voyant_master.html
files, and the main header files used by Doxygen (voyant_head.txt and
voyant_foot.txt).

Variables

A small number of variables can be used within your master file to
facilitate getting the template to work in HTML files that reside in
different directories that could be at different levels.

##rp2start## stands for “relative path to start”. This is used to create
hyperlinks to a file in the root directory when it isn’t known
whether the owning HTML file is in the root or in a subdirectory.
This is used in the common navigation.

##xgroup## stands for the name of the Doxygen group. This is used in
the voy_dox navigation and specifies the name of the project.

##xmanual## stands for the name of the current FrameMaker/Mif2Go
manual. This is used in the voy_fm_book navigation.

##prev## stands for the name of the previous HTML file. This is used
in the voy_fm_book navigation when previous/next browse
buttons are provided to allow the reader to sequential step through
the documentation.

##next## stands for the name of the next HTML file. This is used in
the voy_fm_book navigation when previous/next browse buttons
are provided to allow the reader to sequential step through the
documentation

114 TechPubTools User’s Guide

Notes:

tp-tools-ug-02 115

Chapter 19 TOC Implementation

The index and table of contents need to be flexible to allow
sub-projects to be added, deleted, and updated independently of the
other projects and the whole system.

In the area of the table of contents, this is accomplished using:

• m_tree.script files

• m_toc.html file

• Java TOC Applet

m_tree.script

The voyant_nav.pl perl program (called from the 50_nav_update.b
shell script) generates tree.script files on a sub-project basis. These
are mini-TOC (table of content) files which are specific to that
sub-project.

The format of the tree.script files adheres to the guidelines required
by the Java TOC Applet.

The voyant_mt_app.pl perl program (called from the 56_nav_script.b
shell script) uses these tree.script files to generate
m_tree*.script files which are specific to the whole project or whole
HTML system. The top-level m_tree.script file nests the individual
m_tree*.script files from the sub-projects. Together, this creates the
master table of contents for the whole system.

Note: Because the script files for the table of contents are generated and exist
independently, the entire HTML system becomes more modular and easier to
maintain.

m_toc.html

116 TechPubTools User’s Guide

m_toc.html

The existence of the script files does not mean that they or their
associated Java TOC Applet for the table of contents are accessible in
the HTML system.

The hooks to plug the Java TOC Applet into the project and the HTML
system are in the m_toc.html file. (Topic tracking in the TOC is
accomplished by some parameters for the Java TOC Applet located in
the voyant_master_nav.html file.)

In the TechPubTools implementation, the _start_here.html creates a
frameset and displays the m_toc.html in the left-hand “navigation”
frame.

The m_toc.html file defines how the Java table of contents (TOC)
applet plugs into the system. It provides the input parameters to the
applet, such as the size of the applet and the initial script
(m_tree.script) that is displayed as the table of contents. In addition,
the m_toc.html file can contain information above and below the table
of contents, such as navigation elements and overview topics.

More details about the Java TOC Applet parameters are discussed only
in its documentation, which must be purchased.

Logical Extensions of the Applet

Although the Java TOC Applet is used for the table of contents, it
could theoretically be used for the index, as well.

I explored this direction for a short time with the voyant_indexer.pl
perl program. It still outputs m_idx.script which can be plugged into
the Java TOC Applet (such as on a m_idx.html file) in the same
manner that the m_tree.script files are plugged into the m_toc.html
file.

tp-tools-ug-02 117

 Chapter 19 TOC Implementation

I stopped pursuing this because:

1 There are loading delays when the applet first reads in the script
file. The delays in going back and forth between the table of
contents and index would be too great, particularly for very large
indices.

2 Some of my projects create large indices on the order of 20,000
entries or more, depending upon whether or not word-chunking is
turned on. It may have necessitated breaking the index into nested
script files by letter, much like the table of contents, which
introduces further loading delays.

3 The script files cannot be searched from the browser. Therefore, it
can be more difficult to locate entries in a large index even after
expanding it.

4 The window for the applet (even if put into a separate browser
instance) place limitations on the display region and scrolling.

5 Most important of all, the present design of multiple HTML files
for the index works; the pages load fast, scroll easy, and can be
searched.

Still, there are other areas and other information slicing-and-dicing
that this Java TOC Applet can be used for.

Logical Extensions of the Applet

118 TechPubTools User’s Guide

tp-tools-ug-02 119

Chapter 20 voyant_master_index.html

The voyant_master_index.html file is used by the voyant_indexer.pl
program to create a series of tree files that represent the table of
contents navigation of the HTML system.

More so than the voyant_master_nav.html file, the
voyant_master_index.html file is intended to be used over and over
as a template.

The TechPubTools employ standard HTML comments that reside in
the HTML file but are not displayed by the browser. The comments are
used as pairs (begin and end) and contain a tag name that
TechPubTools recognize.

The voyant_master_index.html can be used as a template to define
your own master file. The name of the file is not important. The
56_nav_index.b shell script makes calls to the voyant_indexer.pl
program and passes in whatever master file you specify.

Presently, the voyant_master_index.html defines:

• the cascading style sheet information in addition to hyperlink
colors.

• the outline of the structure to be used for all navigation pages.

• the links to other pages of the navigation. This can include
fake-buttons at the top and bottom to the Contents, Index, and
Full-Text Search.

Together with the _start_here.html file, a dual pane navigation
system is created. The series of m_idx files that are generated based on
this template file are meant to be displayed in the target=treefrm.
The contents that they control are meant to be displayed in the
target=basefrm.

Your master files are required to have a certain comment tags defined.
Your master file has to be a functional HTML file with the proper
<html>, <head>, and <body> paired tags.

120 TechPubTools User’s Guide

<!-- begin voy_header --><!-- end voy_header --> used for
definitions such as the cascading style sheet and hyperlink options.

<!-- begin voy_structure --><!-- end voy_structure -->
used for defining the exact location where generated table of
contents text is to be placed. You can place hyperlinks to other
navigation control outside of these two comment tags. An example
of that would be “fake-buttons” to the files associated with the
letters of the alphabet.

Note: The tag names in the comment can be changed. However, the change needs to be
propagated into global.pm, mif2htm.ini, the voyant_master.html
files, and the main header files used by Doxygen (voyant_head.txt and
voyant_foot.txt).

tp-tools-ug-02 121

Chapter 21 Common Files

Several files generally copied into the directories before Doxygen or
Mif2Go is run. Although laziness is part of the reason they are copied
instead of referenced to a single location, having them in those
directories facilitates testing and makes each directory a stand-alone
system.

Default HTML Files for Doxygen

Doxygen only generates the files that it needs for the system. However,
in order to create a comprehensive system that spans Doxygen
projects, consistent navigation is required.

Hence these default files are copied by the shell scripts into the
Doxygen code reference directories before Doxygen is run. Doxygen
overwrites these files if appropriate.

• files.html

• classes.html

• annotated.html

• functions.html

• globals.html

• hierarchy.html

• modules.html

122 TechPubTools User’s Guide

Navigation GIF files

The following files are used in the generated tree.html files and in
the m_tree_ navigation files. To facilitate operation, they are copied by
the shell scripts into the directories. These files could be referenced to a
single location, but copying them makes each directory a complete
system in and of itself.

• clear.gif

• voyant.gif

• nav_folderopen.gif

• nav_folderclosed.gif

• nav_doc.gif

• voyant-mdblu.gif

Cascading Style Sheet

In order to provide a consistent look and feel, the voyant_fm.css
cascading style sheet is employed. Although it could be referenced in a
specific location, laziness in implementation and testing has the shell
script copy this into the directories of the project. Copying this file
makes each directory a complete system in and of itself.

• Part of the voyant_fm.css was created by Mif2Go with the first
manual that it exported. Voyant’s Technical Publications
Department has templates that its documents consistently follow.

• Part of the voyant_fm.css was copied from doxygen.css, which
was created by Doxygen.

• A final part of the voyant_fm.css was defined during the
development of the Perl tools that generate the table of contents
and index files.

The resulting voyant_fm.css was then modified and streamlined to
tailor it for our needs.

tp-tools-ug-02 123

Index

Symbols

_start_here.html 119

Numerics

00_build_tp_tools.b 54
20_cp_com_files.b 55
30_tp_tools.b 55
31_perl.b 55
31_script.b 55
32_perl.b 56
32_script.b 56
35_gen_dox.b 56
40_latex_build.b 57
45_latex_build.b 57
50_nav_update.b 58
55_nav_cp.b 60
55_nav_gen.b 59
56_nav_index.b 60

A

annotated.html 121
API documentation xi

future 18
rant 12

applet
Java TOC applet 82
TOC Java 51

auto-documentation 15, 16
automation 1

B

basefrm 119
body

bottom of 112
top of 112

book_ directories 27
book_help_on_help directory 27
book_tp_tools directory 27
bottom of body 112
browsing

topics 69
browsing topics 112

C

cascading style sheet 33, 111, 122
chapter ordering 40
classes.html 121
clear.gif 122
code generation 19
comment tag 37

Mif2Go 37
common files 121
common_files 26
concerns about tools 16
conditional text 33

online use 33
copyright in output 112
creating

an index 60, 79, 119
index tokens 58, 67, 75
mini-table of contents 58, 67, 75
navigational control 58, 67, 75, 111
table of contents 61

cref_ directories 27
cref_tp_tools directory 27
csh_comment_change.pl 109
CSS

doxygen.css 122
voyant_fm.css 122

CVS 55

D

data structures 63, 69
default html files for Doxygen 121
DevaSearch 25, 27
directory structure 26, 55

book_ directories 27
book_help_on_help 27
book_tp_tools 27
cref_ directories 27
cref_tp_tools 27
doc_publish 27
print_pdf 27
tp_tools 26
zdoc_merge 28
zlx_ directories 28
zlx_tp_tools 28

disclaimer iii

124 TechPubTools User’s Guide

Index

division_mult_entry 79
doc_publish directory 27
dox_bug_filter.pl 107
dox_chg_not.pl 108
dox_comment_chg.pl 108
dox_ive_filter.pl 108
Doxygen 25, 47

comment style change 108
default html files 121
filter 107, 108
GENERATE_TREEVIEW 91
index tokens 70
input filters 107
noise reduction 87
preparation 47
project file 48, 55
to Java TOC applet 91
tree.js 91
tree.js to tree.script 91
tree.script 91
treeview.js 91

doxygen.css 122
doxygen.sty 86

E

environment 23

F

fake-button 111
file

_index_list 58, 67, 75
_start_here.html 119
00_build_tp_tools.b 54
20_cp_com_files.b 55
30_tp_tools.b 55
40_latex_build.b 57
50_nav_update.b 58
56_nav_index.b 60
56_nav_script.b 61
common 26, 55, 121
common html 121
csh_comment_change.pl 109
CSS 33, 122
DOX 48
Doxgyen project 55
find_extract.pl 87
GIF 122
html for Doxygen 121
html_look_integrate.pl 93
html_look_integrate.pm 93
INI configuration 97
ini_html_gen.pl 97
LaTex 57
log_html_gen.pl 103
m_idx_ 83
m_toc.html 116
m_tree.script 115

messages.txt 103
PDF 57
pl_comment_change.pl 109
tree.js 91
tree.script 91
tree_js_2_script.pl 91
treeview.js 91
voyant_indexer.pl 60, 79, 119
voyant_latex.pl 85
voyant_master_index.html 60, 79, 119
voyant_master_nav.html 58, 67, 75, 111
voyant_master_tree.html 61
voyant_mt_nav.pl 61
voyant_nav.pl 58, 67, 75

file splitting 36
FileIDs 41
FileSequence 41
filter

bug command 107
csh_comment_change.pl 109
dox_bug_filter.pl 107
dox_chg_not.p 108
dox_comment_chg.pl 108
dox_ive_filter.pl 108
input to Doxygen 107
IVE language 108
pl_comment_change.pl 109

find_extract.pl 87
fonts 34
fonts mapping 34
format

FrameMaker 30
FrameMaker to html 31

FrameMaker 23, 29
conditional text 33
fonts 34
format 30
formats to html 31
Mif2Go 29

frameset 119
basefrm 119
treefrm 119

future
API documentation 18

G

global variables 63
globals.html 121
globe.pm 63, 69, 97, 104
grep 87

H

head 111
header.tex 86
home-grown tools 25

 Index

tp-tools-ug-02 125

html
_start_here.html 119
file splitting 36
FrameMaker formats 31
m_idx_ 83
m_toc_html 116
Phase 5 editor 24
tracing files 93
voyant_master_index.html 119
voyant_master_nav.html 111

html_look_integrate.pl 93
html_look_integrate.pm 93
HTMLOptions 43
HTMLStyleFilePrefix 42
HTMLStyles 42

I

ignore_terms_file 79
index generation 60, 79, 119
index token 70

Doxygen 70
FrameMaker 71
Mif2Go 71

index tokens 44
INI files 97
ini_html_gen.pl 97, 104
IVE language 108

J

Jared Spool 6, 8, 11
Java TOC Applet 51
Java TOC applet 82
jump start xiv

L

LaTex 28, 57
Doxygen 85

library 19
license iii
LOG messages 103
log_html_gen.pl 97, 103
Logical Extensions of the Applet 116

M

m_idx_ files 83
m_toc.html 116
m_tree.script 115
maintainability 1
mapping

FM formats to HTML constructs 31
fonts 34

master definition 112
master tree

GIF files 122
messages.txt 103
Mif2Go 24, 34

file splitting 36
fonts 34
FrameMaker 29
index tokens 71
post-processing tags 37

mif2go.ini
FileIDs 41

mif2htm.ini
FileSequence 41
HTMLOptions 42, 43
HTMLStyles 42

modules.html 121

N

nav_doc.gif 122
nav_folderclosed.gif 122
nav_folderopen.gif 122
navigation 112

GIF files 122
next 113
noise reduction 87

O

order of chapters 40

P

package
perl 63

PDF
from Doxygen 57
from LaTex 57
generation 85

perl 28
csh_comment_change.pl 109
dox_bug_filter.pl 107
dox_chg_not.pl 108
dox_comment_chg.pl 108
dox_ive_filter.pl 108
find_extract.pl 87
globe.pm 63
html_look_integrate.pl 93
html_look_integrate.pm 93
ini_html_gen.pl 97
log_html_gen.pl 103
package 63
pl_comment_change.pl 109
voyant_indexer.pl 79
voyant_latex.pl 85
voyant_mt_nav.pl 75
voyant_nav.pl 67

pl_comment_change.pl 109
pop-up happy 7

126 TechPubTools User’s Guide

Index

post-processing tags
Mif2Go 37

prev 113
print_pdf 27
public library for software 19

Q

quick start xiv

R

rant
API documentation 12
single-sourcing 4

refman.tex 86
re-usability 1, 13
rp2start 113

S

scope xi
script

m_tree 115
SDK documentation xi
shell script 53

00_build_tp_tools.b 54
20_cp_com_files.b 55
30_tp_tools.b 55
31_perl.b 55
31_script.b 55
32_perl.b 56
32_script.b 56
35_gen_dox.b 56
40_latex_build.b 57
45_latex_build.b 57
50_nav_update.b 58
55_nav_cp.b 60
55_nav_gen.b 59
56_nav_index.b 60
56_nav_script.b 61

single-sourcing xi, 1
rant 4

software public libraries 19
Solaris 2.7 24
source code extraction tools 15
SPL 19
Spool, Jared 6, 8, 11
src_fm 27
src_perl 28

T

table of contents generation 61
GIF files 122

table of contents Java applet 82, 115
tag

Mif2Go 37

voy_common_top 49, 112
voy_commont_top 38
voy_dox 38, 49, 112
voy_fm_book 38, 112
voy_footer 38, 49, 112
voy_header 112, 120
voy_html_zap 112
voy_structure 120

template
voyant_master_index.html 119
voyant_master_nav.html 111

TOC implementation 115
top of body 112
topic browsing 69, 112
tp_tools directory 26
tracing HTML files 93
tree.js 91

to tree.script 91
tree.script 91
tree_js_2_script.pl 91
treefrm 119
treeview.js 91

to Java TOC applet 91

U

User Interface Engineering (UIE) 6, 8, 11

V

variable 113
global 63
html 113

voy_common_top tag 38, 49, 112
voy_dox tag 38, 49, 112
voy_fm_book tag 38, 112
voy_footer tag 38, 49, 112
voy_header tag 112, 120
voy_html_zap tag 112
voy_latex 85, 86
voy_latex_head 85, 86
voy_order 85, 86
voy_structure tag 120
voyant.gif 122
voyant_fm.css 122
voyant_indexer.pl 79
voyant_latex.pl 85
voyant_master_index.html 119
voyant_master_nav.html 86, 111
voyant_mt_app.pl 75
voyant_mt_nav.pl 75
voyant_nav.pl 67, 111
voyant_variables 113
voyant-mdblu.gif 122

 Index

tp-tools-ug-02 127

W

web-updatable 1
WebWorks Publisher Professional 24, 34
Windows 2000 23
word-chunking 79

X

xgroup 113

xmanual 113
XML 19, 97, 103
X-Win32 24

Z

zdoc_merge directory 28
zlx_ directories 28
zlx_tp_tools directory 28

128 TechPubTools User’s Guide

Index

	�TechPubTools™
	User’s Guide
	Single Sourcing and API Documentation
	Revision History
	License and Disclaimer

	Contents
	Scope of TechPubTools
	TechPub Tools Features
	Jump Start

	Chapter�1 Single-Sourcing and API Documentation
	The Naysayer’s Argument
	Single-Sourcing Naysayers
	API Documentation Naysayers
	Reality Check

	Single-Sourcing Rant
	“Don’t let perfect be the enemy of the good.”
	Time Heals
	Give the Readers Credit
	Analog Not Anal

	Dysfunctional Online
	Online Disadvantages
	Lots of Plumbing but Little Water
	Three Strikes and You’re Out
	Pop-Up Happy Hell
	Context-Sensitive Suggestion

	Tried and True Printed Manuals
	The Best of Both Worlds
	Foundation and Structure
	Plumbing with Water
	Moving Day
	Withholding Tax

	API Documentation Rant
	Software Engineering
	Information Repository and Tools
	Reusability
	Send in the Tech Writer
	What You Get

	Source Code Extraction Tools
	Concerns about Auto-Documentation Tools
	Writing Quality in the API Documentation
	Auto-Documentation Benefits
	The Code Can Contain More Information
	Software Engineers as Technical Writers

	The Future of (API) Documentation
	Code Generation
	Software Public Libraries
	Get More Thinkers Involved
	Royalties for Their Efforts
	(New) Copyright Protection
	What You Get

	Chapter�2 Environment and Tools
	My Environment
	Home-Grown Tools
	Directory Structure

	Chapter�3 FrameMaker and Mif2Go
	FrameMaker
	FM Formats
	Mapping FM Formats to HTML Constructs
	Online Use and Conditional Text
	Cascading Style Sheet

	Mif2Go
	Fonts Mapping
	File Splitting
	Post-Processing Tags in Splitting
	Chapter Ordering
	[FileIDs] in the mif2go.ini
	[FileSequence] in the mif2htm.ini
	[HTMLStyles] in the mif2htm.ini
	[HTMLStyleFilePrefix] in the mif2htm.ini
	[HTMLOptions] in the mif2htm.ini

	Index Tokens

	Chapter�4 Doxygen
	Preparation for Using Doxygen
	The Doxygen Project File
	Input Filters
	HTML Output
	PDF Output

	Chapter�5 Java TOC Applet
	Chapter�6 Shell Scripts
	00_build_tp_tools.b
	20_cp_com_files.b
	30_tp_tools.b
	31_perl.b and 31_script.b
	32_perl.b and 32_script.b
	35_gen_dox.b
	40_latex_build.b
	45_latex_build.b
	50_nav_update.b
	55_nav_gen.b
	55_nav_cp.b
	56_nav_index.b
	56_nav_script.b

	Chapter�7 globe.pm
	Overview
	Variable and Data Structures
	Common Routines

	Chapter�8 voyant_nav.pl
	Overview
	The Beginnings
	The Extensions
	CYA
	Data Structures
	Topic Browsing
	Index Tokens

	Input
	Output

	Chapter�9 voyant_mt_app.pl
	Overview
	The Beginnings
	The Extensions

	Input
	Output

	Chapter�10 voyant_indexer.pl
	Overview
	The Beginnings
	The Extensions
	Building on the Java TOC Applet

	Input
	Output

	Chapter�11 voyant_latex.pl
	Input
	Output

	Chapter�12 find_extract.pl
	Overview
	Input
	Output
	Implementation Details

	Chapter�13 tree_js_2_script.pl
	Overview
	Input
	Output

	Chapter�14 html_look_integrate.pl
	Overview
	Input
	Output

	Chapter�15 ini_html_gen.pl
	Overview
	Input
	Output

	Chapter�16 log_html_gen.pl
	Overview
	Input
	Output

	Chapter�17 Input Filters to Doxygen
	dox_bug_filter.pl
	dox_ive_filter.pl
	dox_chg_not.pl
	dox_comment_chg.pl
	pl_comment_change.pl
	csh_comment_change.pl

	Chapter�18 voyant_master_nav.html
	Overview
	Minimum Master Definition
	Variables

	Chapter�19 TOC Implementation
	m_tree.script
	m_toc.html
	Logical Extensions of the Applet

	Chapter�20 voyant_master_index.html
	Chapter�21 Common Files
	Default HTML Files for Doxygen
	Navigation GIF files
	Cascading Style Sheet

	Index

